Friday, November 12, 2010

non-invasive tool for assessing liver fibrosis in HIV/HCV patients

Transient elastography: A non-invasive tool for assessing liver fibrosis in HIV/HCV patients
ISSN 1007-9327 CN 14-1219/R
World J Gastroenterol 2010 November 7; 16(41): 5225-5232

BRIEF ARTICLE

Valentina Li Vecchi, Maurizio Soresi, Claudia Colomba, Giovanni Mazzola, Pietro Colletti, Maurizio Mineo, Paola Di Carlo, Emanuele La Spada, Giovanni Vizzini, Giuseppe Montalto
Valentina Li Vecchi, Maurizio Soresi, Giovanni Mazzola, Pietro Colletti, Maurizio Mineo, Emanuele La Spada, Giuseppe Montalto, Department of Clinical Medicine and Emerging Pathologies, University of Palermo, Via del Vespro 141, 90127 Palermo, Italy
Claudia Colomba, Paola Di Carlo, Infectious Diseases Section, Department of Health Promotion Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
Giovanni Vizzini, Department of Gastroenterology and Hepatology, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IsMeTT), University of Pittsburgh Medical Center, Via Tricomi 1, 90127 Palermo, Italy
Author contributions: Montalto G, Li Vecchi V and Mazzola G designed the research; Li Vecchi V, Mazzola G, La Spada E, Colletti P, Mineo M, Colomba C and Di Carlo P performed the research; Soresi M analyzed the data; Li Vecchi V and Montalto G wrote the paper; Montalto G, Soresi M and Vizzini G reviewed the paper.
Correspondence to: Giuseppe Montalto, Professor, Department of Clinical Medicine and Emerging Pathologies, University of Palermo, Via del Vespro 141, 90127 Palermo, Italy. gmontal@unipa.it
Telephone: +39-91-6552991 Fax: +39-91-6552977
Received: April 14, 2010   Revised: June 1, 2010
Accepted: June 8, 2010
Published online: November 7, 2010

Abstract

AIM:
To assess the prevalence of advanced liver fibrosis (ALF) in human immunodeficiency virus (HIV), hepatitis C virus (HCV) and HIV/HCV patients using transient elastography, and to identify factors associated with ALF.

METHODS:
Between September 2008 and October 2009, 71 HIV mono-infected, 57 HIV/HCV co-infected and 53 HCV mono-infected patients on regular follow-up at our Center were enrolled in this study. Alcohol intake, the main parameters of liver function, presence of HCV-RNA, HIV-RNA, duration of highly active anti-retroviral therapy (HAART) and CD4 cell count were recorded. ALF was defined as liver stiffness (LS) ≥ 9.5 kPa. To estimate liver fibrosis (LF) a further 2 reliable biochemical scores, aspartate aminotransferase platelet ratio index (APRI) and FIB-4, were also used.

RESULTS:
LS values of co-infected patients were higher than in either HIV or HCV mono-infected patients (c2MH = 4, P < c2 =" 5,"> 9.5 kPa. There was no significant correlation between extent of LF and HAART exposure or duration of HAART exposure, in particular with specific dideoxynucleoside analogues.

CONCLUSION:
ALF was more frequent in co-infected than mono-infected patients. This result correlated with lower CD4 levels. Protective immunological effects of HAART on LF progression outweigh its hepatotoxic effects.


Peer reviewer: Dr. Chao-Hung Hung, MD, Associate Professor, Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Niao Sung, Kaohsiung 833, Taiwan, China

Li Vecchi V, Soresi M, Colomba C, Mazzola G, Colletti P, Mineo M, Di Carlo P, La Spada E, Vizzini G, Montalto G. Transient elastography: A non-invasive tool for assessing liver fibrosis in HIV/HCV patients. World J Gastroenterol 2010; 16(41): 5225-5232 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i41/5225.htm DOI : http://dx.doi.org/10.3748/wjg.v16.i41.5225

INTRODUCTION

In the last few years, liver disease associated with hepatitis C virus (HCV) has emerged as a significant problem in human immunodeficiency virus (HIV)-infected patients, thanks to improved survival in the highly active anti-retroviral therapy (HAART) era[1]. It has been reported that HIV and HCV co-infection leads to a more rapid progression of liver disease to cirrhosis[2,3]. Other factors such as severe immune suppression and alcohol consumption accelerate the progression of HCV-related fibrosis[4,5]. Virologically successful HAART slows the progression of liver fibrosis (LF) and reduces hepatic necroinflammatory activity in HIV/HCV co-infected patients[2,6]. In contrast, antiretroviral-related liver toxicity could contribute to liver damage in HIV- and HIV/HCV-infected patients[7]. Mitochondrial toxicity of nucleoside analogues[8], and glucose or lipid abnormalities, such as hyperglycemia and lipodystrophy, which are particularly common when using some protease inhibitors[9], may produce or enhance LF progression in HIV mono- and HIV/HCV co-infected patients. Currently, in this respect, a growing number of cases of cryptogenetic liver disease in symptomatic and asymptomatic HIV-infected patients has been reported[10,11].

Percutaneous liver biopsy is the gold standard for assessing LF. However, it may be associated with sampling variability[12], is an invasive technique with rates of morbidity of 3% and mortality of 0.03%[13,14], and as a consequence, is not suitable for repeated assessment, which is required when monitoring LF.

For these reasons, new non-invasive methods for the assessment of LF have been developed. Transient elastography (TE) (Fibro-Scan®; EchoSens, Paris, France) is a rapid, reliable and tolerable imaging technique for the assessment of LF by measuring liver stiffness (LS)[15,16].

On the other hand, many biochemical markers have been implemented to estimate LF, with the aim of reducing the number of liver biopsies[14].

The advent of TE and biochemical markers has been demonstrated to be very helpful in the non-invasive measurement of LF, particularly in asymptomatic HIV-infected patients in whom liver biopsy is not recommended[11]. TE has already been validated for the measurement of LF in HIV and HCV seropositive patients[17,18].

The aim of this study was to assess the prevalence of LF and cirrhosis in a group of HIV mono-infected, HCV mono-infected and HIV/HCV co-infected patients using TE and biochemical markers. In addition, we evaluated which of the factors studied correlated with advanced LF (ALF) and cirrhosis.

MATERIALS AND METHODS

Study population

Between September 2008 and October 2009 all consecutive HIV mono-infected and HIV/HCV co-infected patients on regular follow-up at the AIDS Center of the University of Palermo, as well as HCV mono-infected patients seen consecutively at the Outpatient Clinic of the Department of Clinical Medicine and Emerging Pathologies of the University of Palermo were enrolled in this study.

Information on age, gender, risk factors for HCV and HIV infections, cumulative exposure to non-nucleoside and nucleoside reverse-transcriptase inhibitors, protease inhibitors and specific antiretroviral drugs within each class were all recorded in a database designed for this study.

For all HIV-infected patients the absolute number of CD4+ T-cells and plasma HIV-RNA levels was assessed. In HCV-infected patients, HCV-genotype and plasma HCV-RNA levels were also recorded. In addition, at baseline, complete blood cell counts, alanine aminotransferase (ALT), aspartate aminotransferase (AST), g-glutamyl transferase (gGT), total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides and glycemia were measured.

Alcohol intake > 20 g/d either at the time of the study or in the past was recorded through patient interviews. Diabetes or impaired fasting glucose (IFG) were defined according to the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus criteria[19].

Patients with acute liver decompensation, hepatocellular carcinoma or chronic hepatitis B were excluded.

The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki. Patients were enrolled after written informed consent was obtained.

Assessment of LF

LF was assessed by a single certified operator (trained by the manufacturer) using TE (FibroScan®; EchoSens, Paris, France). TE provides an assessment of LS expressed in kPa units. In brief, an ultrasound transducer probe is mounted on the axis of a vibrator. Vibrations of mild amplitude and low frequency are transmitted by the transducer, inducing an elastic shear wave that propagates through the underlying tissues. The speed of propagation of this vibration across the liver is directly related to tissue stiffness.

The tip of the probe transducer was placed in the intercostal spaces at the right lobe of the liver. Only patients with 10 valid elastometric measures, interquartile ranges > 30% and ≥ 60% success rate (the number of validated measurements divided by the total number of measurements) were considered to be reliable. ALF (severe fibrosis and cirrhosis) was defined as a median LS of 9.5 kPa. As previously published, this cut-off value is strongly correlated with a Metavir score of F3, both in HCV mono-infected and HCV⁄HIV co-infected patients[17,18].

LF was also assessed biologically using 2 different well-validated indices, the aspartate aminotransferase platelet ratio index (APRI) index and the FIB-4 index. The APRI was calculated as follows: AST⁄upper limit of normal × 100⁄platelet count (109⁄L)[20,21]. The FIB-4 index was calculated as follows: age × AST (IU⁄L)⁄{[platelet count (109⁄L)] × [ALT (IU⁄L)]1⁄2}[22]. The prevalence of ALF was estimated using as a reference a FIB-4 index > 3.25 and an APRI index > 1.5[20,22].

Statistical analysis

When data distribution was Gaussian, values were expressed as mean ± SD and their differences were calculated using the Student t-test; otherwise, data were expressed as the median and range and analyzed using the Mann-Whitney U test. Fisher’s exact and c2 tests, the c2 test of Mantel Haenszel, Spearman’s rank correlations (r) and Pearson’s correlation (r) were used where appropriate. Multiple linear regression analysis was used to study the association between increased values of LS and variables statistically significant at univariate analysis. All analyses were performed using the SPSS software package (version 13.0; Chicago, IL, USA).

RESULTS

Study population

A total of 201 patients on regular follow-up at both our Centers were enrolled in the study.

In 11 patients (4 HIV mono-infected, 6 HCV mono-infected and one co-infected) a valid elastometric assessment could not be obtained because of truncular obesity, therefore 190 patients were finally included in this study. There were 137 HIV-infected patients, including 71 HIV mono-infected and 66 HIV/HCV co-infected, and 53 HCV mono-infected patients. Patient characteristics at the time of LS measurement are summarized in Table 1.

HIV patients were significantly younger than HCV mono-infected individuals (P < c2mh =" 4," c2 =" 5," r =" 0.5," b =" 0.47," b =" 0.25," b =" 0.34," b =" 0.4," b =" -0.21," r =" 0.60," r =" 0.64," r =" 0.50," r ="0.53,"> 20 g/d (P <> 20 g/d in both HCV mono-infected and co-infected patients, but we did not find any correlations between LF and duration of HCV infection, HAART exposure, duration of HAART exposure or cumulative exposure to any class of antiretroviral drugs.

Applications

A good adherence to antiretroviral therapy, when it is indicated, is important to reduce the risk of progression of LF in co-infected patients. In addition, HCV mono- and co-infected patients should modify negative habits and lifestyles, such as alcohol consumption, which could accelerate the progression of LF. Important fields for further study could include the use and evaluation of the applicability of FibroScan® for repeated assessment in the monitoring of LF.

Terminology

Transient elastometry (Fibro-Scan®; EchoSens, Paris, France) is a rapid, reliable and well-tolerated imaging technique for the assessment of LF by measuring LS.

Peer review

The authors aimed to assess the prevalence of advanced LF (ALF) in HIV, HCV and HIV/HCV patients using TE and to identify factors associated with ALF. They concluded that HIV/HCV co-infected patients had ALF more frequently at TE than HCV and HIV mono-infected patients. The title reflects accurately the contents of the article, and the abstract delineates concisely the research.

REFERENCES

1 Mocroft A, Soriano V, Rockstroh J, Reiss P, Kirk O, de Wit S, Gatell J, Clotet B, Phillips AN, Lundgren JD. Is there evidence for an increase in the death rate from liver-related disease in patients with HIV? AIDS 2005; 19: 2117-2125

2 Benhamou Y, Bochet M, Di Martino V, Charlotte F, Azria F, Coutellier A, Vidaud M, Bricaire F, Opolon P, Katlama C, Poynard T. Liver fibrosis progression in human immunodeficiency virus and hepatitis C virus coinfected patients. The Multivirc Group. Hepatology 1999; 30: 1054-1058

3 Pineda JA, Romero-Gómez M, Díaz-García F, Girón-González JA, Montero JL, Torre-Cisneros J, Andrade RJ, González-Serrano M, Aguilar J, Aguilar-Guisado M, Navarro JM, Salmerón J, Caballero-Granado FJ, García-García JA. HIV coinfection shortens the survival of patients with hepatitis C virus-related decompensated cirrhosis. Hepatology 2005; 41: 779-789

4 Martín-Carbonero L, Benhamou Y, Puoti M, Berenguer J, Mallolas J, Quereda C, Arizcorreta A, Gonzalez A, Rockstroh J, Asensi V, Miralles P, Laguno M, Moreno L, Girón JA, Vogel M, García-Samaniego J, Nuñez M, Romero M, Moreno S, de la Cruz JJ, Soriano V. Incidence and predictors of severe liver fibrosis in human immunodeficiency virus-infected patients with chronic hepatitis C: a European collaborative study. Clin Infect Dis 2004; 38: 128-133

5 Mohsen AH, Easterbrook PJ, Taylor C, Portmann B, Kulasegaram R, Murad S, Wiselka M, Norris S. Impact of human immunodeficiency virus (HIV) infection on the progression of liver fibrosis in hepatitis C virus infected patients. Gut 2003; 52: 1035-1040

6 Bräu N, Salvatore M, Ríos-Bedoya CF, Fernández-Carbia A, Paronetto F, Rodríguez-Orengo JF, Rodríguez-Torres M. Slower fibrosis progression in HIV/HCV-coinfected patients with successful HIV suppression using antiretroviral therapy. J Hepatol 2006; 44: 47-55

7 Núñez M, Soriano V. Hepatotoxicity of antiretrovirals: incidence, mechanisms and management. Drug Saf 2005; 28: 53-66

8 John M, Moore CB, James IR, Nolan D, Upton RP, McKinnon EJ, Mallal SA. Chronic hyperlactatemia in HIV-infected patients taking antiretroviral therapy. AIDS 2001; 15: 717-723

9 Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, Cooper DA. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 1998; 12: F51-F58

10 Dinh MH, Stosor V, Rao SM, Miller FH, Green RM. Cryptogenic liver disease in HIV-seropositive men. HIV Med 2009; 10: 447-453

11 Castellares C, Barreiro P, Martín-Carbonero L, Labarga P, Vispo ME, Casado R, Galindo L, García-Gascó P, García-Samaniego J, Soriano V. Liver cirrhosis in HIV-infected patients: prevalence, aetiology and clinical outcome. J Viral Hepat 2008; 15: 165-172

12 Poniachik J, Bernstein DE, Reddy KR, Jeffers LJ, Coelho-Little ME, Civantos F, Schiff ER. The role of laparoscopy in the diagnosis of cirrhosis. Gastrointest Endosc 1996; 43: 568-571

13 Piccinino F, Sagnelli E, Pasquale G, Giusti G. Complications following percutaneous liver biopsy. A multicentre retrospective study on 68,276 biopsies. J Hepatol 1986; 2: 165-173

14 Montalto G, Soresi M, Carroccio A, Bascone F, Tripi S, Aragona F, Di Gaetano G, Notarbartolo A. Percutaneous liver biopsy: a safe outpatient procedure? Digestion 2001; 63: 55-60

15 Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F, Beaugrand M, Palau R. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705-1713

16 Ziol M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F, de Lédinghen V, Marcellin P, Dhumeaux D, Trinchet JC, Beaugrand M. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54

17 de Lédinghen V, Douvin C, Kettaneh A, Ziol M, Roulot D, Marcellin P, Dhumeaux D, Beaugrand M. Diagnosis of hepatic fibrosis and cirrhosis by transient elastography in HIV/hepatitis C virus-coinfected patients. J Acquir Immune Defic Syndr 2006; 41: 175-179

18 de Lédinghen V, Barreiro P, Foucher J, Labarga P, Castéra L, Vispo ME, Bernard PH, Martin-Carbonero L, Neau D, García-Gascó P, Merrouche W, Soriano V. Liver fibrosis on account of chronic hepatitis C is more severe in HIV-positive than HIV-negative patients despite antiretroviral therapy. J Viral Hepat 2008; 15: 427-433

19 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539-553

20 Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003; 38: 518-526

21 Macías J, Girón-González JA, González-Serrano M, Merino D, Cano P, Mira JA, Arizcorreta-Yarza A, Ruíz-Morales J, Lomas-Cabeza JM, García-García JA, Corzo JE, Pineda JA. Prediction of liver fibrosis in human immunodeficiency virus/hepatitis C virus coinfected patients by simple non-invasive indexes. Gut 2006; 55: 409-414

22 Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, S Sulkowski M, Torriani FJ, Dieterich DT, Thomas DL, Messinger D, Nelson M. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006; 43: 1317-1325

23 Martinez-Sierra C, Arizcorreta A, Díaz F, Roldán R, Martín-Herrera L, Pérez-Guzmán E, Girón-González JA. Progression of chronic hepatitis C to liver fibrosis and cirrhosis in patients coinfected with hepatitis C virus and human immunodeficiency virus. Clin Infect Dis 2003; 36: 491-498

24 Thein HH, Yi Q, Dore GJ, Krahn MD. Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis. AIDS 2008; 22: 1979-1991

25 Deng LP, Gui XE, Zhang YX, Gao SC, Yang RR. Impact of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. World J Gastroenterol 2009; 15: 996-1003

26 Graham CS, Baden LR, Yu E, Mrus JM, Carnie J, Heeren T, Koziel MJ. Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. Clin Infect Dis 2001; 33: 562-569

27 Pineda JA, García-García JA, Aguilar-Guisado M, Ríos-Villegas MJ, Ruiz-Morales J, Rivero A, del Valle J, Luque R, Rodríguez-Baño J, González-Serrano M, Camacho A, Macías J, Grilo I, Gómez-Mateos JM. Clinical progression of hepatitis C virus-related chronic liver disease in human immunodeficiency virus-infected patients undergoing highly active antiretroviral therapy. Hepatology 2007; 46: 622-630

28 Berenguer J, Bellón JM, Miralles P, Alvarez E, Sánchez-Conde M, Cosín J, López JC, Alvarez F, Catalán P, Resino S. Identification of liver fibrosis in HIV/HCV-coinfected patients using a simple predictive model based on routine laboratory data. J Viral Hepat 2007; 14: 859-869

29 Halfon P, Pénaranda G, Carrat F, Bedossa P, Bourlière M, Ouzan D, Renou C, Tran A, Rosenthal E, Wartelle C, Delasalle P, Cacoub P. Influence of insulin resistance on hepatic fibrosis and steatosis in hepatitis C virus (HCV) mono-infected compared with HIV-HCV co-infected patients. Aliment Pharmacol Ther 2009; 30: 61-70

30 Blanco F, Barreiro P, Ryan P, Vispo E, Martín-Carbonero L, Tuma P, Labarga P, Medrano J, González-Lahoz J, Soriano V. Risk factors for advanced liver fibrosis in HIV-infected individuals: role of antiretroviral drugs and insulin resistance. J Viral Hepat 2010; Epub ahead of print

31 Soriano V, Maida I, Núñez M, García-Samaniego J, Barreiro P, Martín-Carbonero L, González-Lahoz J. Long-term follow-up of HIV-infected patients with chronic hepatitis C virus infection treated with interferon-based therapies. Antivir Ther 2004; 9: 987-992

32 Berenguer J, Alvarez-Pellicer J, Martín PM, López-Aldeguer J, Von-Wichmann MA, Quereda C, Mallolas J, Sanz J, Tural C, Bellón JM, González-García J. Sustained virological response to interferon plus ribavirin reduces liver-related complications and mortality in patients coinfected with human immunodeficiency virus and hepatitis C virus. Hepatology 2009; 50: 407-413

33 Soriano V, Labarga P, Ruiz-Sancho A, Garcia-Samaniego J, Barreiro P. Regression of liver fibrosis in hepatitis C virus/HIV-co-infected patients after treatment with pegylated interferon plus ribavirin. AIDS 2006; 20: 2225-2227

34 Sterling RK, Contos MJ, Smith PG, Stravitz RT, Luketic VA, Fuchs M, Shiffman ML, Sanyal AJ. Steatohepatitis: Risk factors and impact on disease severity in human immunodeficiency virus/hepatitis C virus coinfection. Hepatology 2008; 47: 1118-1127

35 Soriano V, Mocroft A, Rockstroh J, Ledergerber B, Knysz B, Chaplinskas S, Peters L, Karlsson A, Katlama C, Toro C, Kupfer B, Vogel M, Lundgren J. Spontaneous viral clearance, viral load, and genotype distribution of hepatitis C virus (HCV) in HIV-infected patients with anti-HCV antibodies in Europe. J Infect Dis 2008; 198: 1337-1344

S- Editor Tian L L- Editor Cant MR E- Editor Zheng XM


http://www.wjgnet.com/1007-9327/16/5225.asp

No comments:

Post a Comment