Thursday, July 19, 2018

Systematic overview of hepatitis C infection in the Middle East and North Africa

World J Gastroenterol. Jul 21, 2018; 24(27): 3038-3054
Published online Jul 21, 2018. doi: 10.3748/wjg.v24.i27.3038

Systematic overview of hepatitis C infection in the Middle East and North Africa
Karima Chaabna, Sohaila Cheema, Amit Abraham, Hekmat Alrouh, Albert B Lowenfels, Patrick Maisonneuve, Ravinder Mamtani 


Core Tip: Targeting specific populations at higher risk of acquiring HCV infection and treatment programs require the development of evidence-based health policies. HCV infection epidemiology in the countries of the Middle East and North Africa was characterized in 37 systematic reviews (SR) during the last decade. Our systematic overview critically analyzes and synthesizes the findings of these SRs to map the evidence gaps in the region. Additionally, we assessed the quality of the reported outcomes and documented conflicts of interest of the SR authors who disclosed financial relationships with pharmaceuticals.

To assess the quality of and to critically synthesize the available data on hepatitis C infections in the Middle East and North Africa (MENA) region to map evidence gaps.

We conducted an overview of systematic reviews (SRs) following an a priori developed protocol (CRD42017076736). Our overview followed the preferred reporting items for systematic reviews and meta-analyses guidelines for reporting SRs and abstracts and did not receive any funding. Two independent reviewers systematically searched MEDLINE and conducted a multistage screening of the identified articles. Out of 5758 identified articles, 37 SRs of hepatitis C virus (HCV) infection in populations living in 20 countries in the MENA region published between 2008 and 2016 were included in our overview. The nine primary outcomes of interest were HCV antibody (anti-) prevalences and incidences in different at-risk populations; the HCV viremic (RNA positive) rate in HCV-positive individuals; HCV viremic prevalence in the general population (GP); the prevalence of HCV co-infection with the hepatitis B virus, human immunodeficiency virus, or schistosomiasis; the HCV genotype/subtype distribution; and the risk factors for HCV transmission. The conflicts of interest declared by the authors of the SRs were also extracted. Good quality outcomes reported by the SRs were defined as having the population, outcome, study time and setting defined as recommended by the PICOTS framework and a sample size > 100.

We included SRs reporting HCV outcomes with different levels of quality and precision. A substantial proportion of them synthesized data from mixed populations at differing levels of risk for acquiring HCV or at different HCV infection stages (recent and prior HCV transmissions). They also synthesized the data over long periods of time (e.g., two decades). Anti-HCV prevalence in the GP varied widely in the MENA region from 0.1% (study dates not reported) in the United Arab Emirates to 2.1%-13.5% (2003-2006) in Pakistan and 14.7% (2008) in Egypt. Data were not identified for Bahrain, Jordan, or Palestine. Good quality estimates of anti-HCV prevalence in the GP were reported for Algeria, Djibouti, Egypt, Iraq, Morocco, Pakistan, Syria, Sudan, Tunisia, and Yemen. Anti-HCV incidence estimates in the GP were reported only for Egypt (0.8-6.8 per 1000 person-year, 1997-2003). In Egypt, Morocco, and the United Arab Emirates, viremic rates in anti-HCV-positive individuals from the GP were approximately 70%. In the GP, the viremic prevalence varied from 0.7% (2011) in Saudi Arabia to 5.8% (2007-2008) in Pakistan and 10.0% (2008) in Egypt. Anti-HCV prevalence was lower in blood donors than in the GP, ranging from 0.2% (1992-1993) in Algeria to 1.7% (2005) in Yemen. The reporting quality of the outcomes in blood donors was good in the MENA countries, except in Qatar where no time framework was reported for the outcome. Some countries had anti-HCV prevalence estimates for children, transfused patients, contacts of HCV-infected patients, prisoners, sex workers, and men who have sex with men.

A substantial proportion of the reported outcomes may not help policymakers to develop micro-elimination strategies with precise HCV infection prevention and treatment programs in the region, as nowcasting HCV epidemiology using these data is potentially difficult. In addition to providing accurate information on HCV epidemiology, outcomes should also demonstrate practical and clinical significance and relevance. Based on the available data, most countries in the region have low to moderate anti-HCV prevalence. To achieve HCV elimination by 2030, up-to-date, good quality data on HCV epidemiology are required for the GP and key populations such as people who inject drugs and men who have sex with men.

No comments:

Post a Comment