C.-C. Hu1,2, C.-L. Lin1,2, Y.-L. Kuo1, C.-H. Chien1, S.-W. Chen1, C.-L. Yen1, C.-Y. Lin2,3, R.-N. Chien1,2,*
Article first published online: 5 NOV 2012
DOI: 10.1111/apt.12112
Alimentary Pharmacology & Therapeutics
Summary
Background
Limited data are available on the efficacy and safety of antiviral therapy in geriatric patients with chronic hepatitis C virus (HCV) infection.
Aim
Aim
To evaluate the efficacy and safety of pegylated interferon (pegIFN) plus ribavirin (RBV) therapy in geriatric HCV-infected patients.
Methods
Methods
Ninety-one geriatric patients (age ≥65 years; the elderly group) with HCV infection and 91 gender- and HCV genotype-matched middle-aged patients (age 50–64 years; the younger group) were assigned to receive weekly pegIFN injection plus weight-based oral RBV for 24 weeks. The on- and off-treatment virological responses were evaluated for treatment efficacy.
Results
Results
In intention-to-treat analysis, the sustained virological response (SVR) rate was substantially decreased in the elderly patients (elderly group vs. younger group, 40.7% vs. 61.5%, respectively; P = 0.005). The SVR rate was significantly lower in geriatric patients than in middle-aged patients with HCV genotype non-1 (54.3% vs. 82.9%; P = 0.01), but the difference was not significant with HCV genotype 1 (32.1% vs. 48.2%; P = 0.083). Furthermore, the older patients infected with HCV genotype non-1 who achieved a rapid virological response had a similar SVR rate to that of the younger patients. The withdrawal rate was 13.2% in the elderly group and 7.7% in the younger group.
Conclusions
Conclusions
Compared with middle-aged patients, the therapeutic efficacy of pegylated interferon plus ribavirin therapy is lower in hepatitis C virus-infected geriatric patients with an acceptable withdrawal rate. Considering prolonged lifespan in geriatric patients, we recommend treating geriatric hepatitis C virus-infected patients who have significant hepatic fibrosis and no other health problems.
Introduction
Introduction
Chronic infection with hepatitis C virus (HCV) is a major global health problem and an important cause of morbidity and mortality from sequelae such as liver cirrhosis and hepatocellular carcinoma (HCC).[1-3] HCV has infected approximately 170 million people worldwide, most of whom have chronic disease.[4] It has also been estimated that, globally, 27% of cirrhosis and 25% of HCC cases develop in HCV-infected people.[5] The positive seroprevalence rate of antibodies to HCV (anti-HCV) in the adult population is 1–4% in Taiwan,[6] and there is geographical variation, such that in hyperendemic areas, the seroprevalence rate of positive anti-HCV can be as high as 60%. In addition, the anti-HCV positive rate increases progressively after the age of 20 years and its peak prevalence is at 70–84 years of age.[7] A study carried out on a large population of chronic HCV-infected patients in France has shown that approximately 18% of patients are over 65 years of age.[8] Previous study has shown that the risk of cirrhosis progression is proportional to the duration of HCV infection.[9] Age at onset of HCV infection was also found to be a major factor affecting the rate of progression of fibrosis in chronic hepatitis C (CHC) patients, where cirrhosis developed within the first 20 years in only 2% of patients infected with HCV before the age of 20 years, but it rose to 63% in patients infected over the age of 50 years. Once cirrhosis has developed, the patients are at substantial risk of HCC, with a yearly incidence rate of 2–8%.[3, 10]
Geriatric individuals are defined as those aged more than 65 years. Although combination therapy with pegylated interferon (pegIFN) plus ribavirin (RBV) has greatly improved treatment efficacy and is the main treatment strategy for chronic HCV infection,[11-14] it has also been associated with more side effects than has pegIFN monotherapy. Many clinical trials have excluded patients aged more than 65 years because there was a tendency towards a lower sustained virological response (SVR) rate in the elderly patients and a high rate of discontinuation due to adverse effects.[15-18] Nevertheless, older patients with chronic HCV infection are at higher risk of liver disease progression than are younger patients.[9] Furthermore, it was reported that pegIFN therapy reduces the incidence of HCC and liver-related mortality in geriatric patients with CHC significantly in the responders, and even the relapsers could gain a benefit from therapy, with a substantial decrease in the incidence of liver-related complications.[19, 20] However, only a few studies have been focused on the efficacy and safety of the pegIFN and RBV combination therapy in elderly patients with CHC.[8, 17, 18, 21] We therefore conducted a prospective study to evaluate the efficacy and safety of pegIFN combined with RBV therapy in elderly patients with chronic HCV infection. An equal number of gender- and HCV genotype–matched middle-aged patients were also enrolled for comparison.
Patients and Methods
Patients
Patients and Methods
Patients
This prospective case–control study was conducted at our institute from October 2003 to July 2009. The number of patients aged over 65 years with chronic HCV infection, defined as seropositive for anti-HCV and HCV RNA for more than 6 months, screened during this period was 133. Of these, 91 consecutive patients were enrolled in this study (the elderly group). During the same period, another 91 gender- and genotype- (1 vs. non-1) matched patients, aged between 50 and 64 years, were screened from 268 patients and included as a control group (the younger group). None of the patients had received antiviral therapy before enrolment. Concurrent hepatitis B virus (HBV) infection, human immunodeficiency virus (HIV), toxic hepatitis, autoimmune hepatitis, primary biliary cirrhosis and Wilson's disease were excluded. Decompensated liver cirrhosis, chronic alcohol abuse and uncontrolled major depression based on clinical or biochemical evidence were also excluded. The haemogram of the patients enrolled included a leucocyte count of >2300 cells/mm3, a haemoglobin level of >8.1 g/dL, and a platelet count of >45 000 cells/ mm3.
Methods
Methods
All 182 patients received weekly subcutaneous pegIFN injection plus daily oral RBV for 24 weeks, in accordance with the reimbursement criteria of the National Health Insurance in Taiwan. The pegIFN treatments prescribed were pegIFN alfa-2a, 180 μg, or weight-based pegIFN alfa-2b, 1.5 μg/kg. For genotype 1 HCV-infected patients, the oral RBV dose was 1000 mg per day for patients of body weight (BW) <75 kg, or 1200 mg for BW ≥75 kg. For genotype non-1 HCV-infected patients, the RBV dose was 800 mg per day. All patients were followed up for 24 weeks after the completion of treatment. During the treatment period, patients attended weekly outpatient visits during the first 4 weeks, biweekly visits between the 5th and 12th weeks and monthly visits during the last 12 weeks. During the 24-week follow-up period, they attended the clinic monthly or bimonthly. Haematological and liver biochemical tests were conducted during each visit. HCV RNA levels were measured before the initiation of treatment, at week 4, at week 12, at the end of treatment and 24 weeks after treatment. All biochemical and virological tests were carried out in the clinical laboratories of Chang Gung Memorial Hospital. Adverse side effects that developed during RBV and pegIFN treatment were also recorded at each visit. Patients completing more than 80% of the recommended RBV and pegIFN dosage for more than 80% of the expected treatment period were defined as having 80/80/80 adherence.[22] Informed consent was obtained from all patients enrolled in this study. The study was performed in accordance with the ethical guidelines of the International Conference on Harmonization for Good Clinical Practice and has been approved by the Institutional Review Board of Chang Gung Memorial Hospital (No. 99–3012C).
Anti-HCV tests were conducted using a third-generation enzyme immunoassay kit (AxSYM HCV Version 3.0; Abbott Laboratories, Berkshire, UK). Serum HCV RNA was quantified using a real-time polymerase chain reaction (PCR) assay (COBAS AmpliPrep Instrument and COBAS TaqMan 48; Roche Molecular Systems, Inc., Branchburg, NJ, USA), with a detection limit of 15 IU/mL. HCV genotype was determined with the use of a linear probe assay [VERSANT HCV Genotype Assay (LiPA); Bayer Corporation, NY, USA]. Liver biopsy was routinely advised and obtained if the patient agreed. Advanced fibrosis was defined as a score of ≥4 on the Ishak modification of the Histology Activity Index (HAI). Diagnosis of liver cirrhosis was based on a cirrhosis scoring system described previously[23] with sensitivity and specificity of 80% and 92.8% respectively, by using ultrasonography or an Ishak fibrosis score of ≥5.
Evaluation of the efficacy of combined pegIFN and RBV treatment
Evaluation of the efficacy of combined pegIFN and RBV treatment
On-treatment response was monitored after 4 and 12 weeks of therapy. Patients who had undetectable serum HCV RNA by PCR at week 4 were defined as having a rapid virological response (RVR). A complete early virological response (cEVR) was defined as patients who had undetectable serum HCV RNA at 12 weeks of therapy in the absence of RVR. The treatment efficacy was evaluated after 24 weeks combined pegIFN and RBV therapy (end of treatment; EOT) and at 24 weeks posttreatment follow-up (end of follow-up; EOFU). A sustained virological response (SVR) was defined as achievement of undetectable serum HCV RNA by PCR at the EOT, which was sustained at the EOFU.
Statistical analysis
Statistical analysis
The statistical test was equivalent in form to a chi-square test statistic. Specifically for geriatric patients, a continuity-corrected chi-square test with a 0.025 two-sided significance level would have 80% power to detect a 22% difference between geriatric and middle-aged control patients. Assuming that the test arm had an SVR rate of 40% and the control arm had an SVR rate of 62%, the sample size in each group would be 80. After adjusting for a 10% withdrawal rate in this study, the final sample size would be 89 in each group.
Evaluation of the efficacy of RBV and pegIFN therapy was assessed by intention-to-treat (ITT) analysis. For the ITT analysis, patients who received more than one dose of pegIFN or RBV were enrolled, and drug discontinuation was defined as treatment stopped without completing 80% of the expected dosage. The continuous demographic data were expressed as the mean ± standard deviation (s.d.), and a two-tailed Student's unpaired t-test was employed to evaluate the difference between means. Differences between groups of categorical variables were analysed using a chi-square test or Fisher's exact test. The significant factors were then subjected to multivariate analysis with a stepwise (forward) regression model to test for interactions between the different significant covariates. A P-value of <0.05 was considered statistically significant. The statistical analyses were performed using the spss ver. 12.0 software package (SPSS Inc., Chicago, IL, USA).
Results
Demographic and clinical characteristics of the patients
Results
Demographic and clinical characteristics of the patients
The baseline characteristics of the 182 patients who underwent pegIFN plus RBV treatment are shown in Table 1. The majority of the patients were female (62%). One hundred and twelve patients were infected with HCV genotype 1 (62%). Most of the demographic and virological characteristics and treatment regimens were similar in both groups, excepting that the mean age of patients in the elderly group was significantly greater than that in the younger group (69.1 ± 3.4 vs. 56.7 ± 4.1 years, respectively; P < 0.001). The mean body weight and body mass index (BMI) were lower in older patients. The mean duration of first known CHC infection was 5.2 years and 6.1 years in the elderly and younger groups, respectively. There was no statistical significance between them. The possible infection route of HCV was largely unknown except in 24 (13%) patients – previous surgery in 14 (7.7%), blood transfusion in 7 (3.8%), surgery plus blood transfusion in 8 (4.4%) and skin tattooing in 1 (0.5%). There was no statistical significance between the elderly and younger groups. The pre-treatment aspartate aminotransferase level (AST) was higher (113.2 ± 65.7 vs. 94.5 ± 55.5 U/L, respectively; P = 0.028), and white blood cell and haemoglobin levels were lower (5.2 ± 1.9 × 103 vs. 5.9 ± 1.6 × 103 cells/L; P = 0.005, and 13.6 ± 1.6 vs. 14.0 ± 1.5 g/dL; P = 0.047), in the elderly patients. Sixty-eight patients in the elderly group and 86 patients in the younger group underwent liver biopsy prior to pegIFN plus RBV therapy. There were more cirrhotic patients in the elderly group than in the younger group (36% vs. 21%; P = 0.022). The proportion of patients with advanced fibrosis in both groups was similar (36.5% vs. 23.9%; P = 0.129). Thirty patients (33%) in the elderly group had a serum HCV RNA viral load of less than 4 × 105 IU/mL, as did 31 patients (34%) in the younger group (P = 0.875).
Characteristic |
Elderly group
(n = 91)
|
Younger group
(n = 91)
| P-value |
---|---|---|---|
| |||
Age (range) (years)* | 69.1 ± 3.4(65–80) | 56.7 ± 4.1(50–64) | <0.001 |
Male gender** | 35 (38) | 35 (38) | 1 |
Duration of HCV infection (years)* | 5.2 ± 3.4 | 6.1 ± 4.9 | 0.148 |
Genotype 1** | 56 (62) | 56 (62) | 1 |
Cirrhosis** | 33 (36) | 19 (21) | 0.022 |
Fatty liver** | 32 (35.2) | 45 (49.5) | 0.051 |
Body weight (kg)* | 59.9 ± 10.3 | 63.4 ± 10.9 | 0.041 |
Body mass index (kg/m2)* | 24.5 ± 3.4 | 24.7 ± 3.8 | 0.045 |
Necroinflammatory scores* | 6.5 ± 2.5 | 6.0 ± 2.3 | 0.172 |
Advanced fibrosis** | 45/68 (66.2) | 50/86 (58.1) | 0.308 |
AST (U/L)* | 113.2 ± 65.7 | 94.5 ± 55.5 | 0.028 |
ALT (U/L)* | 130.5 ± 82.5 | 135.4 ± 92.2 | 0.72 |
Albumin (g/dL)* | 4.0 ± 0.4 | 4.1 ± 0.5 | 0.275 |
Total bilirubin (mg/dL)* | 1.1 ± 0.5 | 1.0 ± 0.5 | 0.265 |
White blood cell count (×103/μL)* | 5.2 ± 1.9 | 5.9 ± 1.6 | 0.005 |
Haemoglobin level (g/dL)* | 13.6 ± 1.6 | 14.0 ± 1.5 | 0.047 |
Platelet count (×103/μL)* | 150.5 ± 55.0 | 164.0 ± 54.6 | 0.1 |
HCV RNA (IU/mL)* | 1.67 ± 2.10 × 106 | 1.97 ± 6.96 × 106 | 0.7 |
Low viral load** | 30 (33) | 31 (34) | 0.875 |
Ribavirin per body weight (mg/kg/day)* | 15.9 ± 2.7 | 15.3 ± 3.1 | 0.567 |
Treatment duration (weeks) | 24 | 24 | 1 |
Virological responses to treatment
Virological responses to the combined pegIFN and RBV treatment are shown in Table 2. Sixty-one percent and 87.3% of patients achieved an RVR and cEVR, respectively. The RVR and cEVR rates in the elderly and younger groups were similar (RVR, 56.2% vs. 65.1%; P = 0.249, and cEVR, 83.3% vs. 90.6%; P = 0.174). After stratification by HCV genotype (genotype 1 & non-1), there was no difference in on-treatment response between these 2 groups.
Response
HCV genotype
|
Elderly group
n/N (%)
|
Younger group
n/N (%)
| P-value |
---|---|---|---|
| |||
RVR | 41/73 (56.2) | 56/86 (65.1) | 0.249 |
1 | 20/45 (44.4) | 30/53 (56.6) | 0.23 |
Non-1 | 21/28 (75.0) | 26/33 (78.8) | 0.726 |
cEVR | 60/72 (83.3) | 77/85 (90.6) | 0.174 |
1 | 32/44 (72.7) | 44/52 (84.6) | 0.153 |
Non-1 | 28/28 (100) | 33/33 (100) | 1 |
ETR | 72/91 (79.1) | 81/91 (89.0) | 0.068 |
1 | 42/56 (75.0) | 47/56 (83.9) | 0.242 |
Non-1 | 30/35 (85.7) | 34/35 (97.1) | 0.088 |
SVR | 37/91 (40.7) | 56/91 (61.5) | 0.005 |
1 | 18/56 (32.1) | 27/56 (48.2) | 0.083 |
Non-1 | 19/35 (54.3) | 29/35 (82.9) | 0.01 |
Relapse | 35/72 (48.6) | 25/81 (30.9) | 0.025 |
1 | 24/42 (57.1) | 20/47 (42.6) | 0.169 |
Non-1 | 11/30 (36.7) | 5/34 (14.7) | 0.043 |
Withdrawal | 12/91 (13.2) | 7/91 (7.7) | 0.225 |
1 | 6/56 (10.7) | 5/56 (8.9) | 0.751 |
Non-1 | 6/35 (17.1) | 2/35 (5.7) | 0.133 |
Dose Reduction | 23/91 (25.3) | 15/91 (16.5) | 0.145 |
1 | 15/56 (26.8) | 8/56 (14.3) | 0.102 |
Non-1 | 8/35 (22.9) | 7/35 (20) | 0.771 |
Overall, 153 patients (84.1%) achieved an EOT response (ETR); the proportion was slightly lower in the elderly group than in the younger group with a marginal significance (79.1% vs. 89%; P = 0.068). If these patients were further stratified by HCV genotype, the ETR was similar in HCV genotype 1 patients between the elderly and younger groups (75% vs. 83.9%; P = 0.242). However, for HCV genotype non-1, ETR tended to be lower in the elderly than in the younger groups with a marginal significance (85.7% vs. 97.1%; P = 0.088). Of the 182 patients, 93 (51.1%) achieved SVR. The SVR rate was significantly lower among older patients (elderly group vs. younger group, 40.7% vs. 61.5%; P = 0.005). Among patients with HCV genotype 1, the SVR rate was slightly lower in the elderly group than in the younger group, with a marginal significance (32.1% vs. 48.2%; P = 0.083). However, for patients infected with HCV genotype non-1, the SVR rate was significantly lower in the elderly group (54.3% vs. 82.9%; P = 0.01). The SVR rate was substantially higher in patients with genotype non-1 infection than in those infected with genotype 1 in both patient groups (genotype 1 vs. non-1, 32.1% vs. 54.3% in the elderly group; P = 0.036, and 48.2% vs. 82.9% in the younger group; P = 0.001).
The relapse rate was higher among patients with HCV genotype 1 than genotype non-1 (49.4% vs. 25.0%; P = 0.002). It was also higher in the elderly patients (48.6% vs. 30.9%; P = 0.025) (Table 2). Among HCV genotype 1-infected patients, the relapse rate was similar in both patient groups (57.1% vs. 42.6%; P = 0.169). Older patients infected with genotype non-1 showed higher relapse rates than the younger patients (36.7% vs. 14.7%; P = 0.043).
In univariate analysis, younger age, male gender, HCV genotype non-1, lower HCV RNA level, noncirrhotic liver, higher haemoglobin and platelet count, 80/80/80 adherence, RVR, and cEVR were predictive factors for SVR. In multivariate analysis to identify predictors of sustained virological response, our final multiple logistic regression model, including those significant factors in univariate analysis, was entered in the final stepwise regression analysis. The results showed that RVR is the strongest predictor for SVR [OR (odds ratio) 3.94, 95% confidence interval (CI) 1.84–8.41, P < 0.001], followed by HCV genotype non-1, male gender, younger age and higher pre-treatment platelet count (Table 3).
Factors | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
OR | 95% CI | P-value | OR | 95% CI | P-value | |
| ||||||
Age (middle age) | 2.335 | 1.289–4.231 | 0.005 | 2.552 | 1.195–5.447 | 0.015 |
Male gender | 3.248 | 1.730–6.102 | <0.001 | 2.971 | 1.360–6.488 | 0.006 |
HCV genotype (non-1) | 3.248 | 1.730–6.102 | <0.001 | 3.110 | 1.394–6.940 | 0.006 |
LVL | 2.444 | 1.290–4.629 | 0.006 | |||
RVR | 5.307 | 2.653–10.614 | <0.001 | 3.939 | 1.844–8.412 | <0.001 |
Liver cirrhosis | 0.488 | 0.253–0.942 | 0.032 | |||
Haemoglobin level (mg/dL) | 1.285 | 1.054–1.567 | 0.013 | |||
Platelet count (×103/μL) | 1.008 | 1.002–1.014 | 0.006 | 1.008 | 1.000–1.015 | 0.04 |
80/80/80 adherence | 3.703 | 1.557–8.806 | 0.003 |
Virological responses to treatment in patients with a rapid virological response
Among patients with RVR, the SVR rate was 70%, which was substantially higher than in the overall study population. The influence of achieving RVR on the SVR rate was further assessed by comparing the 2 age groups (Table 4). Elderly patients with an RVR still had a lower SVR rate than middle-aged patients (58.5% vs. 78.6%; P = 0.033). However, in HCV genotype non-1–infected patients with an RVR, the SVR rates among older patients were similar to those of middle-aged patients. In addition, among middle-aged patients infected by HCV genotype non-1 without an RVR, the SVR rate was 85.7%, which was significantly higher than that in HCV genotype 1 patients (21.7%) (P = 0.002) (Table 4).
SVR rate | Overall | Elderly group | Younger group | |
---|---|---|---|---|
| ||||
HCV genotype | n/N (%) | n/N (%) | n/N (%) | P-value |
With RVR | 68/97 (70.1) | 24/41 (58.5) | 44/56 (78.6) | 0.033 |
1 | 33/50 (66) | 11/20 (55) | 22/30 (73.3) | 0.18 |
Non-1 | 35/47 (74.5) | 13/21 (61.9) | 22/26 (84.6) | 0.076 |
Without RVR | 19/62 (30.6) | 8/32 (25) | 11/30 (36.7) | 0.319 |
1 | 10/48 (20.8)* | 5/25 (20) | 5/24 (21.7)** | 0.882 |
Non-1 | 9/14 (64.3)* | 3/7 (42.9) | 6/7 (85.7)** | 0.094 |
Discontinuation of treatment
Twelve patients (13.2%) in the elderly group and 7 patients (7.7%) in the younger group withdrew from therapy because of intolerance to treatment-related adverse effects. Twenty-three patients (25.2%) in the elderly group and 15 patients (16.5%) in the younger group required modification of the dosage regimen during treatment. Reduced pegIFN dose due to adverse effects was required in a greater percentage of elderly patients (14.3% of the elderly group vs. 3% of the younger group; P = 0.034). The main clinical adverse effects included malaise (40%), pruritus (37.4%), insomnia (29.1%), anorexia (29.1%), dizziness (25.3%), dyspnoea (25.3%), fever (22%), myalgia (20%), and skin rash (17%). The patients in both groups had similar adverse effect profiles. However, a greater percentage of elderly patients had anorexia (36.2% of the elderly group vs. 22.1% of the younger group; P = 0.034), dyspnoea (31.9% of the elderly group vs. 19.1% of the younger group; P = 0.004) and skin rash (23.4% of the elderly group vs. 10.3% of the younger group; P = 0.017). With regard to haematological adverse effects, more patients in the elderly than in the younger group developed thrombocytopaenia (19.1% of the elderly group vs. 7.9% of the younger group; P = 0.028) and anaemia (28.6% of the elderly group vs. 18% of the younger group, P = 0.093). Twenty-two patients (24.2%) in the elderly group and 13 patients (14.3%) in the younger group needed erythropoietin therapy because of symptomatic anaemia. One elderly patient developed severe thrombocytopaenia (platelet count, 1 × 103/μL) with bleeding oral ulcers after 4 weeks of combined pegIFN and RBV treatment.
Discussion
Discussion
Whether to treat geriatric HCV-infected patients using RBV plus pegIFN therapy (standard of care; SOC) is a controversial issue because of lower SVR and higher discontinuation rate in such patients.[21, 24, 25] However, lifespan is gradually increasing in developed countries, including Taiwan.[26] In addition, the therapeutic efficacy of RBV plus pegIFN is good in chronic HCV-infected patients, especially in the Asia-Pacific region. As standard of treatment for chronic HCV infection, the SVR rates of patients infected with HCV genotype-1 after 24 weeks of therapy in Taiwan are 42–66%, which are comparable to SVR rates of 42–52% in Western countries.[11, 13, 14, 27-30] If the treatment duration extends to 48 weeks, the SVR rates of HCV genotype 1–infected patients can increase to 76–79%.[27, 28, 31] Our study further confirms the lower SVR rate in HCV-infected geriatric patients compared with middle-aged patients (41% vs. 62%; P = 0.005) after RBV plus pegIFN therapy for 24 weeks. Referring to HCV genotype, this trend is also obvious in either genotype 1 or non-1 in both geriatric and control patients (32% vs. 48% in genotype 1, P = 0.083; 54% vs. 83% in genotype non-1, P = 0.01). However, patients infected with genotype non-1 HCV showed higher SVR rates than those infected with genotype 1 in both groups. Notably, the treatment duration in both groups is 24 weeks. This is too short in genotype 1 HCV-infected patients, especially in those with high viral load (>4.0 × 5 log IU/mL), regardless of reaching RVR or not. This treatment duration was stipulated in the reimbursement policy of the National Health Insurance in Taiwan at that time, but treatment duration is now determined by response to therapy. In addition, our results are consistent with previous reports in the literature. The reported efficacy using RBV plus pegIFN to treat geriatric HCV-infected patients in the literature showed an SVR rate of 37–70% (Table 5). The SVR rate was higher in those infected with HCV genotype non-1 (66–90%) than in those infected with HCV genotype 1 (23–52%).[21, 24, 25, 32]
Table 5. Published studies evaluating the treatment response rates of patients older than 65 years
Our study demonstrated that a substantial proportion (40.7%) of elderly patients with CHC could be cured successfully. Although the SVR tended to be lower in geriatric patients than in middle-aged patients (40.7% vs. 61.5%, respectively), this inferiority was found mainly in patients infected with HCV genotype non-1 (54.3% vs. 82.9%; P = 0.01) and was much less significant in those with HCV genotype 1 (32.1% vs. 48.2%; P = 0.083). It was noteworthy that the SVR rate of patients with HCV genotype 1 infection after 24 weeks therapy in our study is comparable to that of patients treated for 48 weeks in other studies (Table 5). The possible explanation might be the susceptibility variation among different races. The possible role of IL-28B in patients is currently being evaluated. Our study showed that age was not a predictive factor of SVR in patients with genotype 1. However, Huang et al.[21] showed that older patients with genotype 1 had a suboptimal SVR compared with younger patients because the older patients had a relatively poor adherence and high treatment discontinuation rate. If the patients adhered to the treatment well as in the per-protocol analysis, the discrimination between the 2 groups disappeared. Furthermore, Kainuma et al.[25] demonstrated that the SVR was significantly higher in patients with genotype 1 who were less than 65 years old (47.3% of 685) than in those aged 65 years or older (22.9% of 253) (P < 0.001); this inferiority of SVR may be due to lower platelet count and higher proportion of prior antiviral treatment in the older patient group. Antonucci et al.[18] demonstrated, compared with patients aged <40 years, older patients showing significantly lower odds of SVR (OR 0.16, 95% CI: 0.05–0.59, P = 0.006; OR 0.13, 95% CI: 0.03–0.49, P = 0.002; OR 0.21, 95% CI: 0.05–0.91, P = 0.037 for patients aged 40–49 years, 50–64 years, and older than 64 years, respectively). In view of HCV genotype-1 being more strongly associated with disease progression and risk of HCC development,[33] it is beneficial for geriatric patients to receive combination therapy under careful monitoring, although the present study showed that geriatric patients have lower SVR.
In contrast to the results with genotype 1, our results demonstrated that age was a predictive factor of SVR in patients with genotype non-1 by multivariate analysis (OR 0.25, 95% CI: 0.08–0.74, P = 0.013). Among patients infected with HCV genotype non-1, the SVR rate was significantly lower in the elderly patient group. Our findings are consistent with those in Kainuma's report.[25] They demonstrated that the SVR was higher in patients with genotype 2 who were less than 65 years old (82.9% of 252) than in those aged 65 years or older (65.6% of 61) (P = 0.004). Accordingly, patients infected with HCV genotype non-1 should be treated as early as possible because increasing age could contribute to the inferiority of SVR.
From previous studies, the contribution of gender to treatment response is controversial.[12, 34-36] Our study found higher response rates in male than in female patients and was consistent with Sezaki's report.[35] They demonstrated that SVR at 24 weeks after treatment was poorer in women than in men who were aged more than 50 years (22% vs. 53%; P < 0.001). Although either or both of pegIFN and RBV were tolerated to a lesser extent by women than by men, the discrepancy of SVR remained distinct even in patients receiving more than 80% of the dose of pegIFN, RBV or both. In our study, rates of dose reduction between male and female patients were similar (24.3% vs. 18.8%; P = 0.371). Therefore, better response to treatment in male patients could not be explained solely by better tolerance of treatment. On the contrary, McHutchison et al.[12] showed that female gender was a predictor for treatment outcome. Further studies are needed to verify if this is related to altered hormone levels or genetic variation.
A previous study from Taiwan[21] has shown that drug discontinuation among patients older than 65 years with hepatitis C was significantly higher than among patients younger than 65 years (21% vs. 6%, respectively; P = 0.001). Kainuma et al.[25] from Japan found that for genotype 1 patients, the discontinuation rate was significantly higher in older patients. However, our study showed that the withdrawal rate of older patients with genotype 1 or non-1 was not different from that of middle-aged patients. This discrepancy between present and previous studies needs further large-scale prospective study for verification.
To prevent HCC and liver-related mortality, patients with CHC are often treated with IFN-based therapy to eradicate HCV. Various studies have demonstrated that IFN-based therapy contributes to a reduced incidence of HCC and improved patient survival by decreasing liver-related death.[19, 37-39] Ikeda et al.[38] showed that the incidence of HCC in IFN-treated HCV-infected patients was 7.6% after 10 years of follow-up, compared with 12.4% in untreated patients. Imai et al.[19] reported a follow-up study over 8.2 years for IFN therapy in aged patients with chronic HCV infection. The 8-year survival rates were significantly higher in sustained virological responders and virological nonresponders, compared with untreated patients (94.6%, 86.8% and 73.9%, respectively). Although Arase et al.[20] demonstrated that female gender and low fibrosis stage (F = 1) were associated with prolonged survival in elderly patients with CHC, they also noted that male gender and fibrosis score >2 were associated with increased incidence of HCC. Because pegIFN plus RBV therapy may cause various adverse effects and is costly, the decision on whether to treat an elderly patient is based on various characteristics of the individual patient. The adverse effects and withdrawal rate due to pegIFN plus RBV therapy-related side effects might tend to increase in elderly patients. However, longer duration of HCV infection and older age at infection are associated with disease progression.[9] In addition, elderly HCV-infected patients have a relatively high proportion of significant hepatic fibrosis. Furthermore, a number of pre-treatment factors are known to improve the SVR rate: younger age, low body weight (<75 kg), higher pre-treatment alanine aminotransferase level, high haemoglobin, high platelet count, absence of cirrhosis, low HCV viral load, and HCV genotype non-1.[12-14, 40] The SVR rate of geriatric HCV-infected patients treated with pegIFN plus RBV was 40–70% in the literature.[8, 18, 21, 24, 25, 32] Therefore, when HCV-infected elderly patients without comorbidities are at risk for disease progression but have several factors predictive of favourable response to pegIFN plus RBV therapy, it is recommended to treat them thereby improving patient survival and reducing liver-related complications.
Direct-acting antiviral agents (DAAs) are potential novel therapies that specifically target HCV (STAT-C) enzymes involved in viral replication or viral entry into the host cell (e.g. proteases and polymerases). For HCV genotype-1 infected patients, the SVR rate can be improved and is as high as 63–75% in treatment-naïve patients and 59–66% in previous null-responders when DAA is combined with pegIFN plus RBV therapy.[41, 42] This new approach to HCV therapy with DAAs offers future potential and might replace pegIFN with fewer adverse effects, and increases patient convenience with regard to administration.
In conclusion, the therapeutic efficacy of pegIFN plus RBV therapy is lower in HCV-infected geriatric patients than in middle-aged patients with an acceptable withdrawal rate. In view of prolonged lifespan and moderate efficacy of combination therapy in geriatric patients, treatment is recommended in geriatric HCV-infected patients with significant hepatic fibrosis and no other health problems.
AuthorShip
AuthorShip
Guarantor of the article: Rong-Nan Chien.
Author contributions: Ching-Chih Hu and Chih-Lang Lin performed the research. Ching-Chih Hu, Chih-Lang Lin, Yen-Lin Kuo and Cheng-Hung Chien collected and analysed the data. Ching-Chih Hu and Rong-Nan Chien designed the research study and wrote the paper. Shuo-Wei Chen, Cho-Li Yen and Chun-Yen Lin contributed to the design of the study. All authors approved the final version of the manuscript.
Acknowledgements
Acknowledgements
Declaration of personal interests: RN chien served as an Asian-Pacific advisory board member for Gilead Science.
Declaration of funding interests: This study was supported by the Chang Gung Memory Hospital Research Grant (CMRPG 280411) and the National Science Council of Taiwan (NSC 99-2314-B-182-030) in part.
References
References
- 1Epidemiology of hepatitis C virus infection. World J Gastroenterol 2007; 13: 2436–41..
- 2Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 1993; 328: 1797–801., , , et al.
- 3Hepatitis C and hepatocellular carcinoma. Ann Hepatol 2010; 9(Suppl.): 119–22..
- 4Hepatitis C virus infection. N Engl J Med 2001; 345: 41–52., .
- 5The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006; 45: 529–38., , , , .
- 6Hepatitis C virus infection in an area hyperendemic for hepatitis B and chronic liver disease: the Taiwan experience. J Infect Dis 1990; 162: 817–22., , , et al.
- 7Estimation of seroprevalence of hepatitis B virus and hepatitis C virus in Taiwan from a large-scale survey of free hepatitis screening participants. J Formos Med Assoc 2007; 106: 148–55., , , , , .
- 8Hepatitis C in 6,865 patients 65 yr or older: a severe and neglected curable disease? Am J Gastroenterol 2006; 101: 1260–7., , , et al.
- 9Fibrosis and disease progression in hepatitis C. Hepatology 2002; 36(Suppl. 1): S47–56., , .Direct Link:
- 10Hepatocellular carcinoma in Italian patients with cirrhosis. N Engl J Med 1991; 325: 675–80., , , et al.
- 11Treatment of chronic hepatitis C in southern Taiwan. Intervirology 2006; 49: 99–106., , , .
- 12Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N Engl J Med 1998; 339: 1485–92., , , et al.
- 13Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 2002; 347: 975–82., , , et al.
- 14Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001; 358: 958–65., , , et al.
- 15Limitation of combination therapy of interferon and ribavirin for older patients with chronic hepatitis C. Hepatology 2006; 43: 54–63., , , et al.
- 16Should aged patients with chronic hepatitis C be treated with interferon and ribavirin combination therapy? Hepatol Res 2006; 35: 185–9., , , et al.
- 17Elderly patients are at greater risk of cytopenia during antiviral therapy for hepatitis C. Can J Gastroenterol 2006; 20: 589–92., , , .
- 18The effect of age on response to therapy with peginterferon alpha plus ribavirin in a cohort of patients with chronic HCV hepatitis including subjects older than 65 yr. Am J Gastroenterol 2007; 102: 1383–91., , , et al.Direct Link:
- 19Interferon therapy for aged patients with chronic hepatitis C: improved survival in patients exhibiting a biochemical response. J Gastroenterol 2004; 39: 1069–77., , , et al.
- 20Long-term outcome after interferon therapy in elderly patients with chronic hepatitis C. Intervirology 2007; 50: 16–23., , , et al.
- 21Efficacy and safety of pegylated interferon combined with ribavirin for the treatment of older patients with chronic hepatitis C. J Infect Dis 2010; 201: 751–9., , , et al.
- 22Adherence to combination therapy enhances sustained response in genotype-1-infected patients with chronic hepatitis C. Gastroenterology 2002; 123: 1061–9., , , et al.
- 23Ultrasonographic changes of early liver cirrhosis in chronic hepatitis B: a longitudinal study. J Clin Ultrasound 1993; 21: 303–8., , , , , .Direct Link:
- 24Efficacy of peginterferon-alpha-2b plus ribavirin in patients aged 65 years and older with chronic hepatitis C. Liver Int 2010; 30: 527–37., , , et al.
- 25Pegylated interferon alpha-2b plus ribavirin for older patients with chronic hepatitis C. World J Gastroenterol 2010; 16: 4400–9., , , et al.
- 26Official statistical reports of population's life span. Department of Health, Executive Yuan, ROC. Available at: http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=10177&class_no=440&level_no=2. Accessed October 10, 2011.
- 27Rapid virological response and treatment duration for chronic hepatitis C genotype 1 patients: a randomized trial. Hepatology 2008; 47: 1884–93., , , et al.
- 28Pegylated interferon-alpha-2a plus ribavirin for treatment-naive Asian patients with hepatitis C virus genotype 1 infection: a multicenter, randomized controlled trial. Clin Infect Dis 2008; 47: 1260–9., , , et al.
- 29Management of cirrhosis due to chronic hepatitis C. J Hepatol 2005; 42(Suppl): S65–74..
- 30Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med 2004; 140: 346–55., , , et al.
- 31Peginterferon alfa-2a plus ribavirin for the treatment of dual chronic infection with hepatitis B and C viruses. Gastroenterology 2009; 136: 496–504 e3., , , et al.
- 32Predictive factors for response to peginterferon-alpha and ribavirin treatment of chronic HCV infection in patients aged 65 years and more. Dig Dis Sci 2010; 55: 3193–9., , , .
- 33Treatment of chronic hepatitis C in Asia: when East meets West. J Gastroenterol Hepatol 2009; 24: 336–45., .
- 34Peginterferon alfa-2a plus ribavirin is more effective than peginterferon alfa-2b plus ribavirin for treating chronic hepatitis C virus infection. Gastroenterology 2010; 138: 116–22., , , et al.
- 35Poor response to pegylated interferon and ribavirin in older women infected with hepatitis C virus of genotype 1b in high viral loads. Dig Dis Sci 2009; 54: 1317–24., , , et al.
- 36Predictive values of amino acid sequences of the core and NS5A regions in antiviral therapy for hepatitis C: a Japanese multi-center study. J Gastroenterol 2009; 44: 952–63., , , et al.
- 37Interferon therapy prolonged life expectancy among chronic hepatitis C patients. Gastroenterology 2002; 123: 483–91., , , et al.
- 38Effect of interferon therapy on hepatocellular carcinogenesis in patients with chronic hepatitis type C: a long-term observation study of 1,643 patients using statistical bias correction with proportional hazard analysis. Hepatology 1999; 29: 1124–30., , , et al.Direct Link:
- 39Favorable prognosis of chronic hepatitis C after interferon therapy by long-term cohort study. Hepatology 2003; 38: 493–502., , , .Direct Link:
- 40Predictors of response of US veterans to treatment for the hepatitis C virus. Hepatology 2007; 46: 37–47., , , .
- 41Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 2011; 364: 1195–206., , , et al.
- 42Boceprevir for previously treated chronic HCV genotype 1 infection. N Engl J Med 2011; 364: 1207–17., , , et al.
No comments:
Post a Comment