Showing posts with label thyroid. Show all posts
Showing posts with label thyroid. Show all posts

Tuesday, September 19, 2017

Thyroid function starting at age 50 tied to life expectancy

Thyroid function starting at age 50 tied to life expectancy
Last Updated: 2017-09-18
By Anne Harding

NEW YORK (Reuters Health) - Low-normal thyroid function is associated with longer life expectancy in middle-aged people, according to data from The Rotterdam Study.

"At age 50, people with low-normal thyroid function live up to 3.5 years longer than those with high-normal thyroid function. Also, people with low-normal thyroid function live a longer life without cardiovascular disease (CVD) than those with high-normal thyroid function," Dr. Arjola Bano of Erasmus Medical Center in Rotterdam, the Netherlands, told Reuters Health by email.

The Rotterdam Study previously found that low-normal thyroid function was associated with an increased risk of diabetes or non-alcoholic fatty liver disease, while high-normal thyroid function was linked to an increased risk of atrial fibrillation or dementia, Dr. Bano noted. "The challenge for future research will be to integrate the associated risk of relevant adverse outcomes, in order to eventually define the clinically relevant normal ranges of thyroid function," she said.

Read the article, here...

Abstract
JAMA Intern Med 2017.

Friday, July 14, 2017

Extrahepatic manifestations of HCV & Treatment

If you are interested in reading full text articles about the treatment and management of HCV I highly suggest you follow Henry E. Chang on Twitter.

Latest Tweets By @HenryEChang on the extrahepatic manifestations of HCV.

July 14, 2017
Extrahepatic manifestations of HCV: The role of direct acting antivirals
María Laura Polo and *Natalia Laufer
Expert Review of Anti-infective Therapy DOI: 10.1080/14787210.2017.1354697

Introduction:
Hepatitis C virus (HCV) represents a major health concern, as nearly 3 million people become newly infected by this pathogen annually. The majority of infected individuals fail to clear the virus, and chronicity is established. Chronic HCV patients are at high risk for liver disease, ranging from mild fibrosis to cirrhosis and severe hepatocellular carcinoma. Over the last few years, the development of multiple direct acting antivirals (DAA) have revolutionized the HCV infection treatment, demonstrating cure rates higher than 90%, and showing less side effects than previous interferon-based regimens. Areas covered: Besides liver, HCV infection affects a variety of organs, therefore inducing diverse extrahepatic manifestations.

This review covers clinical, experimental, and epidemiological publications regarding systemic manifestations of HCV, as well as recent studies focused on the effect of DAA in such conditions.  Expert commentary: Though further research is needed; available data suggest that HCV eradication is often associated with the improvement of extrahepatic symptoms. Therefore, the emergence of DAA would offer the opportunity to treat both HCV infection and its systemic manifestations, requiring shorter treatment duration and driving minor adverse effects.
Link - Download Full Text Article.......
_____________________________________

Clinics in Liver Disease, Volume 21, Issue 3

Chronic Hepatitis C Virus Infection and Depression
Luigi Elio Adinolfi, Riccardo Nevola, Luca Rinaldi, Ciro Romano, Mauro Giordano

KEYWORDS
HCV Depression Quality of life

KEY POINTS

Depression is an extrahepatic manifestation of chronic hepatitis C virus (HCV) infection reported in one-third of patients.

The prevalence of depression in patients with HCV has been estimated to be 1.5 to 4.0 times higher than that observed in the general population.

Direct HCV neuro-invasion, induction of local and systemic inflammation, neurotransmission, and metabolic derangements are the hypothesized pathogenic mechanisms of depression.

Depression considerably impacts health-related quality of life of HCV-positive patients.

Clearance of HCV by antiviral treatments is associated with an improvement of both depression and quality of life.
Link - Download Full Text PDF
_____________________________________

Metabolic Manifestations of Hepatitis C Virus
Lawrence Serfaty

KEYWORDS
Hepatitis C Steatosis Hypobetalipoproteinemia Microsomal triglyceride transfer protein Insulin resistance. Tumor necrosis factor

KEY POINTS

Out of excessive alcohol consumption, steatosis should be classified into 2 types according to hepatitis C virus (HCV) genotypes: metabolic steatosis, which is associated with features of metabolic syndrome and insulin resistance in patients infected with nongenotype 3, and viral steatosis, which is correlated with viral load and hyperlipemia in patients infected with genotype 3.

HCV interacts with host lipid metabolism by several mechanisms, such as promotion of lipogenesis, reduction of fatty acid oxidation, and decreases of lipids export, leading to hepatic steatosis and hypolipidemia.

A strong link between HCV infection and diabetes mellitus has been found in subjectbased studies and, to a lesser degree, in population-based studies.

HCV-mediated insulin resistance may be promoted through multiple pathogenic mechanisms, such as direct inhibition of insulin signaling pathway by HCV core protein in the liver, overproduction of tumor necrosis factor-alpha, oxidative stress, modulation of incretins, or pancreatic ß-cells dysfunction.
Link - Download Full Text PDF
_____________________________________

Neurologic manifestations of hepatitis C virus infection
Sentia Iriana, MD, Michael P. Curry, MD, Nezam H. Afdhal, MD, DSc

KEYWORDS
Hepatitis C Fatigue Neurocognition MR spectroscopy Interferon Ledipasvir/sofosbuvir Cerebrovascular disease

KEY POINTS
The extrahepatic manifestations of hepatitis C virus (HCV) in the brain include neurocognitive dysfunction, which is manifested by subtle changes in memory, attention, and processing speed.

Neurocognitive defects are independent of the histologic stage of disease and may be induced by a direct effect of HCV on microglial cells or mediated by systemic cytokines crossing the blood-brain barrier.

Magnetic resonance spectroscopy demonstrates abnormal metabolism in basal ganglia and prefrontal and frontal cortex, which has been associated with fatigue and abnormal neurocognitive testing. Interferon and direct-acting antiviral therapy can improve cerebral metabolism and neurocognition if a sustained virologic response is obtained.

Cerebrovascular events and mortality are increased in patients with HCV and may be through an increased risk of carotid artery disease and plaque formation.
Link - Full Text PDF Article
_____________________________________

Rheumatologic manifestations of hepatitis C virus
Patrice Cacoub, Cloé Comarmond, Anne Claire Desbois, David Saadoun

KEYWORDS
Hepatitis C (HCV) Rheumatic disorders Arthritis Vasculitis Arthralgia Sicca syndrome

KEY POINTS
Main rheumatologic manifestations reported with hepatitis C virus (HCV) chronic infection include arthralgia, myalgia, cryoglobulinemia vasculitis, and sicca syndrome.

Immunologic factors predisposing to developsuch manifestations include stimulation of B cells, expansion of B-cell–producing immunoglobulin M with rheumatoid factor activity and of clonal marginal zone, like B cells, and a decrease of regulatory T cells.

The treatment of HCV infection with interferon alpha has been contraindicated for a long time in many rheumatologic autoimmune/inflammatory disorders.

New oral interferon-free combinations now offer an opportunity for patients with HCV extrahepatic manifestations, including rheumatologic autoimmune/inflammatory disorders, to be cured with a high efficacy rate and a low risk of side effects.
Link - Full Text PDF Download
_____________________________________

Other EHM of HCV infection (pulmonary, idiopathic thrombocytopenic purpura, nondiabetes endocrine disorders
Daniel Segna, Jean-François DuFour

KEYWORDS
Hepatitis C Extrahepatic manifestations Pulmonary Endocrine Idiopathic thrombocytopenic purpura

KEY POINTS

Hepatitis C Virus (HCV) infection may increase the risk for obstructive, interstitial, and vascular lung disease, lung cancer, and mortality in HCV-infected lung transplant recipients.

HCV infection may increase the risk of idiopathic thrombocytopenic purpura, nonresponse to corticosteroids during the treatment, and higher rates of splenectomy.

HCV infection may increase the risk of autoimmune thyroiditis, infertility, growth hormone and adrenal deficiency, osteoporosis, and low-trauma fractures.

Targeted prospective cohorts may confirm these results mostly obtained from small casecontrol studies with different study populations and low level of evidence.
Link - Full Text PDF Download
_____________________________________

Hepatitis C Virus–Associated Non-Hodgkin Lymphomas
Gabriele Pozzato, Cesare Mazzaro, Valter Gattei

KEYWORDS
Hepatitis C virus Marginal zone lymphoma Non-Hodgkin lymphoma Direct antiviral agents

KEY POINTS
Eradication of hepatitis C virus (HCV) in indolent non-Hodgkin lymphomas (NHLs), especially in marginal zone lymphomas(MZLs), determines the regression of the hematological disorder in a significant fraction of cases.

Because direct antiviral agents (DAAs) show an excellent profile in terms of efficacy, safety, and rapid onset of action, these drugs can be used in any clinical situation and the presence of any comorbidities.

To avoid the progression of the NHL, despite HCV eradication, antiviral therapy should be provided as soon as the viral infection is discovered; before that, the chronic antigenic stimulation determines the irreversible proliferation of neoplastic B cells.
Link - Full Text PDF Download
_____________________________________

Dermatologic manifestations of chronic hepatitis C
Mehmet Sayiner, Pegah Golabi, Freba Farhat, Zobair M. Younossi

KEYWORDS
Hepatitis C Extrahepatic manifestation Dermatologic manifestation Cryoglobulinemia Porphyria Lichen planus

KEY POINTS
HCV infection is associated with several dermatologic diseases, such as symptomatic mixed cryoglobulinemia, lichen planus, porphyria cutanea tarda, and necrolytic acral erythema.

Most of the dermatologic manifestations may be caused by immune complexes. In the interferon and ribavirin era, treatment was associated with dermatologic side effects.

The new generation of interferon-free and ribavirin-free anti-HCV regimens is devoid of dermatologic side effects.
Link - Full Text PDF Download
_____________________________________

Hepatitis C Infection - A systematic disease
Zobair M. Younossi
KEYWORDS
Hepatitis C virus Hepatic complications Extrahepatic complications

KEY POINTS
It is critical to recognize that hepatitis C virus (HCV) infection is a multifaceted systemic disease with both hepatic and extrahepatic complications.

The comprehensive burden of HCV should not only include its clinical burden, but also its burden on the economic and patient-reported outcomes.

It is only through this comprehensive approach to HCV infection that we can fully appreciate its true burden, and understand the full benefit of curing HCV for the patient and the society.
Link - Download PDF

Thank you Henry E. Chang

Thursday, February 23, 2017

Hepatitis C virus infection and risk of thyroid cancer: A systematic review and meta-analysis

Systematic review

Hepatitis C virus infection and risk of thyroid cancer: A systematic review and meta-analysis
Peng Wanga, 1, Zhaohai Jingb, 1, Changjiang Liua, Meihua Xua, Pei Wanga, Xiao Wanga,
Yulei Yina, Ying Cuia, Dunlin Renc, Xiaopang Raoa, ,

Received 8 August 2016, Accepted 21 January 2017, Available online 20 February 2017
http://dx.doi.org/10.1016/j.ajg.2017.01.003

Abstract
Purpose
Several epidemiological studies investigated the relationship between hepatitis C virus (HCV) infection and risk of thyroid cancer, but the results were not consistent. A systematic review and meta-analysis was conducted to assess the impact of HCV infection on thyroid cancer risk.

Methods
The literature was searched up to March 15, 2016 for case-control or cohort studies on the association between HCV infection and thyroid cancer risk. The summary relative risks (RR) and 95% confidence intervals (CI) were calculated.

Results
Five studies (two case-control studies and three cohort studies) were included in the meta-analysis, with a total of 751,551 participants and 367 cases of thyroid cancer. Meta-analysis of those 5 studies found that there was no statistically significant association between HCV infection and thyroid cancer risk (summary RR = 2.09, 95%CI 0.78–5.64, p = 0.145; I2 = 81.2%). However, HCV infection was significantly associated with increased risk of thyroid cancer (summary RR = 2.86, 95%CI 1.63–5.03, p = 0.003; I2 = 24.9%) after adjusting the heterogeneity.

Conclusion
There is a possible association between HCV infection and increased risk of thyroid cancer, and more cohort studies are needed to validate the possible association.

Abbreviations
RR, relative risk;
CI, confidence interval;
NOS, Newcastle Ottawa scale;
HCV, hepatitis C virus

Wednesday, March 23, 2016

Serum Level of Thyroid Hormones in Patients with Chronic Hepatitis C Virus Infection

Serum Level of Thyroid Hormones in Patients with Chronic Hepatitis C Virus Infection

Download as PDF (Size:1143KB) ePub, PP. 126-134
OJEMD> Vol.6 No.3, March 2016
DOI: 10.4236/ojemd.2016.63017

Authors
Mohamed Abdel-Fattah El-Feki, Nilly Helmy Abdalla, Mohamed Ibrahim Atta, Ahmed Amin Ibrahim 

Affiliation(s)
Internal Medicine Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt.

ABSTRACT
Objective: There are clinical and laboratory associations between thyroid and liver diseases. Hepatitis C virus (HCV) is known to be responsible for both hepatic and extrahepatic diseases. The most frequent and clinically important endocrine extrahepatic diseases are thyroid disorders and type 2 diabetes mellitus. We aim to study the relationship between the serum level of thyroid hormones (THs) and the severity of liver disease in patients with chronic hepatitis C virus (CHC) infection.

Methods: 60 patients with CHC infection were selected for the study. They were divided into two groups: with or without liver cirrhosis. Those with liver cirrhosis were further subdivided according to the Child-Turcotte-Pugh scoring system. Serum levels of free T3 (FT3), free T4 (FT4) and TSH were measured to all patients.

Results: There was decrease in the FT3 and FT4 levels and increase in the TSH levels in patients with CHC with cirrhosis when compared to patients with CHC without cirrhosis.

Conclusion: Thyroid profile abnormalities were seen in cirrhotic HCV patients when compared to non-cirrhotic patients. The abnormalities in the serum level of THs (decreased FT3, FT4, and increased TSH) are strongly associated with the severity of liver damage and advancing of the child score.

KEYWORDS
Hepatitis C Virus, Thyroid Hormones, Liver Cirrhosis

Source
Full text article
Download as PDF

Friday, February 1, 2013

Hepatitis C -Frequency of Thyroid Dysfunctions during Interferon Alpha Treatment

Frequency of Thyroid Dysfunctions during Interferon Alpha Treatment of Single and Combination Therapy in Hepatitis C Virus-Infected Patients: A Systematic Review Based Analysis

Source - PLOS ONE

Abstract

Background
Thyroid dysfunction is the commonest endocrinopathy associated with HCV infection due to interferon-based treatment. This comprehensive and systematic review presents the available evidence for newly developed thyroid antibodies and dysfunctions during interferon treatment (both single and combination) in HCV patients.

Methodology/Principal Findings
This systematic review was conducted in accordance with the PRISMA guidelines. The data generated were used to analyze the risk for thyroid dysfunctions during interferon (IFN) treatment in HCV patients. There was a wide range in the incidence of newly developed thyroid dysfunctions and thyroid antibodies in HCV patients during IFN treatment (both single and combination). The wide range of incidence also denoted the possibility of factors other than IFN treatment for thyroid-related abnormalities in HCV patients. These other factors include HCV viral factors, genetic predisposition, environmental factors, and patho-physiological factors. Variations in IFN dosage, treatment duration of IFN, definition/criteria followed in each study for thyroid dysfunction and irregular thyroid function testing during treatment in different studies influence the outcome of the single studies and jeopardise the validity of a pooled risk estimate of side effects of thyroid dysfunction. Importantly, reports differ as to whether the thyroid-related side effects disappear totally after withdrawal of the IFN treatment.

Conclusions/Significance
The present review shows that there is a wide range in the incidence of newly developed thyroid dysfunctions and thyroid antibodies in IFN treated HCV patients. This is a comprehensive attempt to collate relevant data from 56 publications across several nations about IFN (both mono and combination therapy) related thyroid dysfunction among HCV patients. The role of each factor in causing thyroid dysfunctions in HCV patients treated with IFN should be analyzed in detail in future studies, for a better understanding of the problem and sounder clinical management of the disease.
 
As per the World Health Organization (WHO), nearly 3% of the global population suffers from Hepatitis C Virus (HCV) infection, prevalence of the same ranging from 0.1–5% is reported for different European countries [1], [2]. Interferon alpha (IFN α) - singly and in combination with other drugs - has been popularly used to treat the HCV infection [3], [4]. However, despite its success, this treatment causes several side effects in the HCV patients, including influenza-like symptoms, hematological effects, neuropsychiatric symptoms and, significantly, various thyroid-associated diseases [5]. Severe and even life-threatening side effects of IFN reportedly occur in 0.1 to 1% of patients treated; these include thyroid, visual, auditory, renal and cardiac impairment and pulmonary interstitial fibrosis [6], [7].

A higher prevalence of thyroid disorders has been reported in HCV-infected patients than in the general population [8]. Indeed, thyroid dysfunction is the most common endocrinopathy associated with the IFN-based treatment of HCV infection [7]. Interferon-induced thyroiditis (IIT) is a major clinical problem for patients who receive IFN therapy, with complications like thyrotoxicosis being especially severe [9], [10], [11], [12]. Thyroid diseases have been reported due to treatment based on IFN α as well as IFN ß [4].

IFN has important immunomodulatory properties due to which it can induce autoimmune phenomena like autoimmune thyroiditis with hypo - or hyperthyroidism [8]. Autoimmune thyroiditis has been reported in up to 20% of the patients during IFN-based therapies in a review article [13]. Thyroid dysfunction may also manifest as destructive thyrotoxicosis, Graves’ thyrotoxicosis and hypothyroidism. These pathological conditions may occur in the same patient as a result of different immunological effects of IFNα therapy on the thyroid gland [14]. IFN treatment may also induce a subtle defect in the thyroidal organification of iodide, thus further impairing hormone synthesis [9].
A common drug used with IFN α in HCV treatment is Ribavirin (RIBA) [15]. RIBA is a synthetic analog of guanoside that induces the Th1 cytokines in the immune response against HCV infection [15].When undergoing treatment, IFN and ribavirin synergize to stimulate the immune system in order to eradicate the virus [7]. One innocent bystander in this accentuated response is the thyroid [7].
Such is the correlation between the therapy and the gland malfunction that clinicians have often reduced the dose or sometimes even discontinued IFN α treatment in patients who develop thyroid dysfunction, thus possibly compromising the therapeutic response [16]. The current state of art treatment for HCV patients is a combination of pegylated IFN alpha (2a or 2b) and Ribavirin.
This background, a comprehensive and systematic review presenting the available evidence for the newly developed thyroid antibodies (Tab) and dysfunctions during interferon treatment (both single and combination) in HCV patients was conceived. We have included herein 19591 case studies/patient histories (16149 from mono-therapy and 3442 from combination therapy) from 56 publications (31 mono and 25 combination treatments) to understand the frequency of risk associated with thyroid dysfunctions during IFN treatment (single and combination) among HCV patients.
To the best of our knowledge, this systematic review has included the highest number of case studies and publications to analyze the risk of thyroid dysfunction in patients during both single and combination IFN α treatment compared to earlier studies that were based either on single or combination therapy of IFN α or dealt with limited numbers of patients and publications in earlier narrative and systematic reviews with meta-analysis [7], [17], [18], [19], [20]. The study also analyzes the pre-disposing factors that may cause thyroid dysfunctions in HCV patients.

Methods

Search Strategy and Screening

A systematic literature search was performed using PubMed, EMBASE and Google. The keywords used were ‘interferon treatment’ combined with ‘thyroid’, ‘hepatitis C’, ‘antibodies’, ‘autoimmunity’, ‘dysfunctions’, ‘pegylated’, ‘meta-analysis’, ‘pathogenesis’, ‘molecular mimicry’, ‘genetic predisposition’, ‘Levovirin’, ‘consensus Interferon’, ‘diagnosis’, ‘management’ and ‘ribavirin’ for the period between January 1990 to November 2012. Identification, screening, eligibility and inclusion of database for the study have been depicted in a flow chart (Fig. 1). The flow chart was developed on the basis of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for reporting databases in systematic reviews [21]. The systematic review protocol for PRISMA was based on the information available at http://www.prisma-statement.org/statemen​t.htm.
 
Click To Enlarge
        
 


Figure 1. Identification, screening, eligibility and inclusion of data sources for the study.
 
doi:10.1371/journal.pone.0055364.g001

The inclusion of publications for the present study was based on the following criteria:
  1. Design of study: Case-control, prospective, retrospective
  2. Availability of data on thyroid disease ie., newly developed thyroid dysfunctions (hyper and hypothyroidism),newly developed thyroid antibody (Tab’s) during IFN treatment
  3. Treatment must include at least one of the following therapy regimes:
  1. IFN α
  2. IFN α+RIBA
  3. IFN in combination with RIBA [IFNα 2b+RIBA]
  4. Consensus Interferon-1 (IFN α Con-1)+RIBA
  5. Pegylated IFN (PEG-IFN) α+RIBA
  6. Pegylated IFN (PEG-IFN) α+Levovirin
  7. Consensus Interferon (CIFN) α
German and English Language articles were screened for the study.

Study Quality
The methodological quality of the literature was assessed as “moderate” or “good”. A study was deemed to be of “moderate” quality if it did not include any of the key words given for search and did not follow the inclusion criteria of publication mentioned above. A study was rated as “good” if publications were relevant to the topic, any two of the above keywords were mentioned in the publication, and it followed the inclusion criteria discussed previously. Only the “good” quality publications were selected for the study.

Results

Frequency of Occurrence of Thyroid-related Side Effects among HCV Patients Undergoing IFNα Treatment (Mono and Combination Therapy)

The study found 168 publications from PUBMED and EMBASE and 114 documents from other sources like Google during the systematic database search. Of these, 56 publications were synthesized on the basis of the inclusion criteria and PRISMA guidelines (Fig 1). Table 1 reports the frequency of newly developed thyroid antibodies and thyroid dysfunctions in HCV patients from 31 previous studies, with single and 25 studies pertaining to combination IFN therapy (Table 2). 16149 patients (mono-therapy) and 3442 patients (combination therapy) from different case studies and patient histories were included in the risk analysis from 31and 25 studies from mono-therapy and combination therapy respectively.
 
 
Click To Enlarge
 
 
 
Table 1. Frequency of newly developed thyroid antibodies and clinical thyroid Disease (Including Autoimmune IIT and Non-Autoimmune IIT) in Patients with Hepatitis C Infection treated with mono therapy (IFN α, Ribavirin) treatment.

doi:10.1371/journal.pone.0055364.t001
 
Click To Enlarge
 
 
 
Table 2. Frequency of newly developed thyroid antibodies and clinical thyroid Disease (Including Autoimmune IIT and Non-Autoimmune IIT) in Patients with Hepatitis C Infection treated with combination therapy (IFN α (pegylated or non-pegylated+Ribavirin or Levovirin) treatment.

doi:10.1371/journal.pone.0055364.t002
 
Mono-therapy of IFN

The frequency of newly developed Tab during IFN mono-treatment was in the range between 1.9–47% in 16 studies whereas the newly developed thyroid dysfunction ranged from 0.6–34.6% in 30 studies (Table 1). From 31 studies and out of a total of 16149 patients, the overall frequency of newly developed thyroid dysfunction during IFN treatment (mono-therapy) was 2.7% (Table 1). In one study, the frequency was not reported. From 16 studies and 1656 patients, the overall frequency of occurrence of newly developed Tab during IFN therapy was 20.6% (Table 1). In 15 studies, the frequency of thyroid antibodies was not reported.
 
Combination Therapy for IFN

The frequency of newly developed Tab during IFN treatment in combination therapy was in the range between 0–33.3% in 13 studies whereas the newly developed thyroid dysfunction ranged from 0–100% in 25 studies (Table 2). From 25 studies and out of a total of 3442 patients, the overall frequency of newly developed thyroid dysfunction during IFN treatment (combination therapy) was 12.8% (Table 2). From 13 studies and 1292 patients, the overall frequency of occurrence of newly developed Tab during IFN therapy was 5% (Table 2). There are 3 studies with no newly developed thyroid dysfunction and 2 studies with no Tabs during combination treatment. In 12 studies, the frequency of thyroid antibodies was not reported.
 
Country Wide Publications on Mono-therapy

The 31 publications (mono-therapy) included studies from Japan (8 studies), USA (1 studies), France (3 studies), Italy (12 studies), Spain (2 studies), Norway (1 study), China (1 study), Australia (1 study), Germany (1 study), Pakistan (1 study) and Canada (1 study). 13 studies from Italy showed frequency of the newly developed Tab and thyroid dysfunctions in the range of 9.3–47% and 4–34.6%, respectively. Eight studies from Japan showed the frequency in the range of 1.9–32.8% for newly developed thyroid antibody and 2.7–14.3% for thyroid dysfunctions. Studies from other countries (with 1–3 studies) also demonstrated similar wide variations in the frequency of newly developed thyroid antibody and thyroid dysfunctions (Table 1).
 
Country Wide Publications on Combination Therapy

The 25 publications (combination therapy) included studies from USA (1 study), Italy (1 study), Brazil (2 studies),UK (1 study), China (1 study), Australia (5 studies), Taiwan (2 study), Germany (4 studies), Pakistan (2 studies), Poland (2 studies), Greece (2 studies), Korea (1 study) and Turkey (1 study). 5 studies from Australia showed frequency of the newly developed Tab and thyroid dysfunctions in the range of 0–5% and 0–33.4%, respectively. Four studies from Germany showed the frequency in the range of 5–11.5% for newly developed thyroid antibody and 7.5–18.6% for thyroid dysfunctions. Studies from other countries (with 1–3 studies) also demonstrated similar wide variations in the frequency of newly developed thyroid antibody and thyroid dysfunctions (Table 2).
 
Treatment-specific Thyroid-related Side Effects in HCV Patients Undergoing Single or Combination IFN α Treatment
 
Single IFN α treatment.

Intriguingly, neither the IFN α dosage nor the virological treatment response was found to be related to the incidence of thyroid dysfunction as per one report [21]. The prevalence of thyrotoxicosis in HCV patients treated with IFN α was reported by another study to be 2–3% of the treated patients [14]. Another study concluded that though positive thyroid antibodies with normal thyroid function tests were the most common findings in patients treated with IFN α, thyroid dysfunction was usually described in no more than 15% of all the treated patients [18]. An earlier study [22] conducted on patients undergoing IFN alpha therapy for chronic HCV and with no evidence of pre-existing thyroid disease did not report any thyroid autoantibodies after IFN treatment. As per one report, 15% of the patients treated with IFN α showed thyroid dysfunctions [10].
 

In contrast, the long-acting pegylated IFNα (PIFN) treatment had a lower incidence of thyroid-related side effects compared to non-pegylated IFNα [23], [5]. In patients treated with IFNα, hypothyroidism occurred in 2.4–19% of the patients, especially in those with pre-existing thyroid autoimmunity [24], [4]. The duration of IFN treatment was found to be related to the occurrence of thyroid dysfunction [25]. Another study reported that IFNα could induce both autoimmune and non-autoimmune thyroiditis [26]. Treatment of CIFN α alone showed 6.5% patients with newly developed thyroid antibodies and 11.9% patients with thyroid dysfunctions in a single study (Table 1). In HCV patients, therapy with IFN α and Consensus Interferon (CIFN), namely IFN α con-1 had higher cytotoxic effects on thyroid cells and a higher incidence of destructive thyroiditis than therapy with IFN α [10]. RIBA treatment alone resulted in 23.6% patients with new thyroid antibodies and 15.3% patients with thyroid dysfunctions (Table 1).
 
Combination treatment of IFN α (Pegylated or non-pegylated+RIBA or Levovirin.

Patients treated with IFN α+RIBA have a relative risk of 4.3 for developing thyroid dysfunction [27]. Hypothyroidism was found to be more frequent in patients undergoing this treatment. The risk of developing thyroid autoimmunity after treatment of IFN+RIBA can be a consequence of enhancement of the Th1 immune response, which induces cell-mediated cytotoxicity [27].
 

Our study further brings to front the following findings observed in an earlier study:(i) the addition of RIBA to IFN α therapy for Chronic Hepatitis C (CHC) was associated with a higher risk of hypothyroidism, (ii) Patients without thyroid autoantibodies after treatment with IFN α alone were protected from the development of thyroid autoimmunity and/or dysfunction in a second course of antiviral treatment with IFN α+RIBA, (iii) the development of hypothyroidism in patients with thyroid autoantibodies undergoing treatment with IFN α+RIBA was significantly associated with the long-term remission of CHC [27].The result of the meta-analysis with only four studies and 1231 subjects showed high risk of thyroid dysfunction using Pegylated IFN (PIFN) compared to ribavirin in combination with IFN [17].This study further suggested that the pegylation of IFN, in combination with RBV, had no aggravating effect on thyroid diseases in the hepatitis C-afflicted population [17].
 
Pre-Disposing Factors Causing Thyroid-related Side Effects in HCV Patients

As discussed earlier, a wide range in the prevalence of thyroid-related side effects was observed in the same study locations - for instance, in Italy and Japan (Table 1).This shows that there is the possibility of factors other than IFN playing a role. The other factors like pathophysiological factors, gender and ethnicity, genetic predisposition, HCV viral factors and environmental factors can also lead to thyroid dysfunctions during IFN treatment, which was explained in detail below.
 
Pathophysiological factors.

Pre-existing thyroid autoimmunity can emerge as an important risk factor for developing thyroid dysfunction during IFN therapy. The presence of thyroid peroxidase antibodies (TPO-Ab) before treatment was identified as a risk factor for the incidence of thyroid disease in 60% of HCV patients receiving IFN α [28]. The relative risk of developing thyroid dysfunction, mainly hypothyroidism, was reported to betwo to 14 fold higher in patients with pre-existing positive TPO-Ab, as compared to patients with negative antibodies [9], [29].
 
Gender and ethnicity.

Women were found to be more susceptible than men to develop IFN-related thyroid disease in some studies [3], [18], [30], [31], [32], [51]. These reports show a relative risk of three to seven folds higher for female compared to male. There are other reports which don’t claim any gender based relationship for IFN-related thyroid disease [24], [25], [33], [34], [35]. A higher prevalence of positive antithyroid antibodies (12.7%) and hypothyroidism (8.3%) were observed in female HCV patients undergoing IFN therapy, compared to only 1% positive antithyroid antibodies and no thyroid disease, after IFN treatment [49]. In a multivariate analysis, female gender and being of Asian origin were independent predictors of the development of biochemical thyroid dysfunction during IFNα treatment [49].
 
Genetic predisposition.

A genetic predisposition to thyroid autoimmune disease is probably necessary for the development of thyroid disease in patients treated with IFN [33], [49]. The remarkable variation in the prevalence of IFN-related thyroid disease may also reflect variability in individual predisposition and genetic susceptibility to the disease [8].
 
HCV infection or viral factors itself as a pre-disposing factor.

HCV infection in a patient can lead to development of thyroid autoimmune disease [30], [32], [35], [37]. Among patients infected with HCV, 20–42% show positive thyroid antibodies [30], [37]. In support of this hypothesis, some viral features like mixed HCV genotype infection and low HCV RNA levels are reportedly related to increased risk of developing thyroid disease [32]. HCV proteins show amino acid sequence homology with those of thyroid antigens [28], [35]. The presence of HCV particle within the thyroid cells may additionally contribute further damage to the thyroid gland (77). Therefore, HCV patients may carry a predisposition to autoimmune reactions through the mechanism of molecular mimicry [28].
 

However, a population-based study excluded a specific role of HCV infection in determining the development of thyroid disease [38]. In the absence of interferon treatment, the link between antithyroid autoantibodies, thyroid dysfunction and HCV infection is still debated [8].
 
Excess or deficiency of iodine.

Epidemiological and clinical evidence suggest that iodine supplementation in an iodine-deficient population may precipitate the onset of thyroid autoimmunity [39]. The concomitant administration of pharmacological quantities of iodine to euthyroid patients treated with IFN α did not increase the frequency of thyroid dysfunction, especially hypothyroidism [40]. Destructive thyrotoxicosis was also correlated to low radioiodine uptake [14].
 
Aftermath of IFN Withdrawal

Several studies have put forth contradictory results regarding the reversibility of the effect of IFN therapy on thyroid function after withdrawal of the treatment. As per one study, IFN alpha-related thyroid autoimmunity was not a completely reversible phenomenon because some patients developed chronic thyroiditis [22]. Another relevant observation of the study [22] was the coexistence of thyroglobulin antibodies (Tg-Ab) and TPO-Ab at the end of the treatment. This is a predictive factor for the presence of thyroid dysfunction, even if subclinical, many years after IFN withdrawal.

Autoimmune thyroiditis may not be reversible after IFN therapy [13], but a complete recovery of thyroid function within a few months of IFN withdrawal was also reported in earlier studies [34], [41]. Another report suggested that the treatment of HCV with IFN was safe in patients, since thyroid diseases are mostly reversible after treatment [41]. However, others have reported only a partial reversal of the thyroid dysfunction [29], [30], [42].
 

These contrasting results may be due to either the variable length of follow-up after IFN withdrawal or differences in the criteria used to define the recovery from thyroid disease [16]. Thyroid autoantibodies remain indefinitely positive in about 50% of patients with IFN-induced thyroid disease, whereas in others, circulating antibodies disappear after IFN withdrawal [41].

The uncertainty in the clinical management of patients developing IFN-induced thyroid disease may also be due to the variable expressions and different long-term outcomes of this side effect [16].
 
Managing IFN-induced Thyroid Dysfunction in HCV Patients

Perhaps the true prevalence of thyrotoxicosis or hypothyroidism is much higher than that reported in literature [14], [24], [29], because it is often transient and has mild clinical manifestations [14]. Moreover, the symptoms of thyroid diseases (i.e., fatigue, myalgia, anxiety, depression, weight loss) may be easily mistaken for the side effects of IFN therapy per se [28].
 

Hence, the systematic screening of thyroid gland function and TPO-Ab titers in all patients with HCV - before, during and after IFN alpha therapy - should be recommended. Also, patients should be informed of the associated risk of thyroid dysfunction [30], [43], [44], [45]. To minimize the side effects of IFN treatment like hypothyroidism in the HCV patients it is required to screen the patient for thyroid-related diseases before the onset of the therapy [5], [46].
 

Considering the significant association between HCV infection and autoimmune thyroid diseases (AITD), the detection of TPO-Ab and TG-Ab in all HCV patients, independent of IFN therapy, is suggested [47]. Controlled studies on a large scale are needed to evaluate the role of HCV per se, and that of PEG-IFN and RIBA in the development of autoimmune thyroid diseases [48].

IFN therapy has shown to have direct toxic effect on thyroid cells, resulting in thyrocyte apoptosis, rupture of follicles and release of thyroid hormones [79]. These pathophysiologic events manifest themselves in the form of the bi-phasic thyroid response (0–18 months of treatment: testing will falsely reassure with normal thyroid tests, 18–25 months treatment: testing will detect hyperthyroidism and 25–42 weeks will indicate hyperthyroidism) that is so classical of this type of thyroiditis [74]. Hence the study [74] suggest the need for regular monthly thyroid testing to fully document and diagnose this prevalent and exclusive thyroid dysfunction in HCV patients.
 
Clinical Practice Guidelines for HCV

The current standard approach of European Association for the Study of Liver (EASL) and well accepted standard of care for chronic hepatitis C is treatment with a combination of pegylated INF alpha plus ribavirin [52]. Two pegylated IFN-α molecules can be used in combination with ribavirin. They are pegylated IFN-α 2a and pegylated IFN-α2b [52]. The American Association for the Study of Liver Diseases (AASLD) also proposes the recommended therapy of chronic HCV infection as the combination of a pegylated interferon alpha and ribavirin [53]. The choice of the regimen for pegylated interferon alpha and ribavirin was based upon the results of three pivotal, randomized, clinical trials that demonstrated the superiority of this combination treatment over standard interferon alpha and ribavirin [54][56]. Even though the clinical practice guidelines are mostly followed, the mono-therapy is still continued as treatment regimen for HCV patient as per the available literature in the present systematic review. There are recent studies with single therapy of IFN due to country specific treatment modalities following other than EASL and AASLD criteria.
 
Constraints in Pooled Analysis of Studies

The wide variation among the frequency of side effects was observed in both single and combination therapy studies. The different dosage and treatment schedule and measurements of thyroid parameters at different time intervals viz., 3 months [49], [70], 2–3 months [76], 24 weeks [32] in the publications result in constraints for the outcome of the pooled analysis. Variations in definition/criteria for thyroid dysfunction followed in each study [Table 3] influence the outcome of the pooled risk estimate of side effects of thyroid dysfunction. Hence the overall frequency of thyroid dysfunctions and newly developed Tabs reported as side effects of mono and combination therapy of IFN in HCV patients from different studies in this systematic review analysis may have limitations of factors mentioned above.
 
Click To Enlarge
 
 
 
Table 3. Differences in definition of thyroid dysfunction/positive for thyroid autoantibody given in method section of some of the publications.
 
doi:10.1371/journal.pone.0055364.t003
 
Conclusion

To conclude, the present review shows that there is a wide range in the incidence of newly developed thyroid dysfunctions and thyroid antibodies in IFN-treated HCV patients. IFN α therapy alone or in combination with other drugs has different effects on the incidence of thyroid dysfunctions. Several factors that pre-dispose an HCV patient to acquire thyroid related abnormalities during IFN treatment have been discussed. These may include gender and ethnicity, HCV viral factors, genetic predisposition, and environmental and patho-physiological factors among others. Variations in IFN dosage, treatment duration of IFN, definition/criteria followed in each study for thyroid dysfunction and irregular thyroid function testing during treatment in different studies influence the outcome of each study and render the pooled risk analysis of side effects of thyroid dysfunction difficult. Another aspect highlighted by this systematic review is the variability that occurs among reports discussing the reversibility of thyroid dysfunction after IFN withdrawal. This is a comprehensive attempt to collate relevant data from 56 publications across several nations about IFN (both mono and combination therapy) related thyroid dysfunction among HCV patients. The role of each factor in causing thyroid dysfunctions in HCV patients treated with IFN should be analyzed in detail in future studies, for a better understanding of the problem and sounder clinical management of the disease.
 
Acknowledgments
We wish to thank Dana Wendeler, Documentation Officer of the German Accident Insurance Institution for the Health and Welfare Services (BGW), Hamburg, Germany, for her support with the management of the literature.

Author Contributions
Conceived and designed the experiments: CNK FH AN. Performed the experiments: CNK FH. Analyzed the data: CNK. Contributed reagents/materials/analysis tools: CNK. Wrote the paper: CNK FH AN.

References
  1. World Health Organisation (1999) Global surveillance and control of hepatitis C. Report of a WHO Consultation organised in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J Viral Hepat 6(1): 35–47. Find this article online
  2. EASL (European Association on the studies on the Liver) (1999) EASL International Consensus Conference on hepatitis C. Paris, 26–27 February 1999. Consensus statement. J Hepatol 31 (1): 3–8. Find this article online
  3. Tomer Y, Blackard JT, Akeno N (2007) Interferon alpha treatment and thyroid dysfunction. Endocrinol Metabol Clin North Am 36 (4): 1051–66. Find this article online
  4. Dusheiko G (1997) Side effects of alpha interferon in chronic hepatitis C. Hepatology 26 (3. 1): 112S–121S. Find this article online
  5. Russo MW, Fried MW (2003) Side effects of therapy for chronic hepatitis C. Gastroenterology. 124: 1711–1719. Find this article online
  6. Fattovich G, Giustina G, Favarato S, Ruol A (1996) A survey of adverse events in 11,241 patients with chronic viral hepatitis treated with α interferon. J Hepatol 24: 38–47. Find this article online
  7. Trans HA, Reeves GEM, Gibson R, Attia JR (2009) Development of thyroid diseases in the treatment of chronic hepatitis C with α interferon may be a good prognosticator in achieving a sustained virological response: A metaanalysis. J Gastroenterol Hepatol 24: 1163–1168. Find this article online
  8. Fontaine H, Nalpas B, Poulet B, Carnot F, Zylberberg H, et al. (2001) Hepatitis activity index is a key factor in determining the natural history of chronic hepatitis C. Hum Pathol 32. (9): 904–9. Find this article online
  9. Roti E, Minelli R, Giuberti T, Marchelli S, Schianchi C, et al. (1996) Multiple changes in thyroid function in patients with chronic active HCV hepatitis treated with recombinant interferon-α. Am J Med 101: 482–487. Find this article online
  10. Mazziotti G, Sorvillo F, Stornaiuolo G, Rotondi M, Morisco F, et al. (2002) Temporal relationship between the appearance of thyroid autoantibodies and development of destructive thyroiditis in patients undergoing treatment with two different type-1 interferons for HCV-related chronic hepatitis: a prospective study. J Endocrinol Invest 25: 624–630. Find this article online
  11. Villanueva RB, Brau N (2002) Graves’ ophthalmopathy associated with interferon-αtreatment for hepatitis C. Thyroid. 12: 737–738. Find this article online
  12. Kryczka W, Brojer E, Kowalska A, Zarebska-Michaluk D (2001) Thyroid gland dysfunctions during antiviral therapy of chronic hepatitis C. Med Sci Monit. 7 (Suppl 1)221–5. Find this article online
  13. Manns MP, Wedemeyer H, Cornberg M (2006) Treating viral hepatitis C: efficacy, side effects and complications. Gut 55: 1350–1359. Find this article online
  14. Wang SH, Bretz JD, Phelps E, Mezosi E, Arscott PL, et al. (2002) A unique combination of inflammatory cytokines enhances apoptosis of thyroid follicular cells and transforms nondestructive to destructive thyroiditis in experimental autoimmune thyroiditis. J Immunol 168: 2470–2474. Find this article online
  15. Hultgren C, Milich DR, Weiland O, Sallberg M (1998) The antiviral compound ribavirin modulates the T helper (Th)1/Th2 subset balance in hepatitis B and C virus-specific immune responses. J Gen Virol 79: 2381–2391. Find this article online
  16. Carella C, MazziottiG, Amato G, Braverman LE, Roti E (2004) Clinical review 169: Interferon alpha related thyroid disease : pathophysiological, epidemiological and clinical aspects. J Clin Endocrinol Metab 89 (8): 3656–61. Find this article online
  17. Tran HA, Attia JR, Jones TL, Batey RG (2007) Pegylated interferon α2β in combination with ribavirin does not aggravate thyroid dysfunction in comparison to regular interferon α2β in hepatitis C population: Meta-analysis. J Gastroenterol Hepatol 22: 472–476. Find this article online
  18. Prummel MF, Laurberg P (2003) Interferon- α and autoimmune thyroid disease. Thyroid 13: 547–551. Find this article online
  19. Chan WB, Chow CC, Cockram CS (2003) Interferon alpha treatment and endocrine disease. J Royal Soc Med 96: 481–485. Find this article online
  20. Marcellin P, Pouteau M (1995) Benhamon (1995) Hepatitis C virus infection, alpha interferon therapy and thyroid dysfunction. J Hepatol 22: 364–369. Find this article online
  21. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7): e1000097 doi:10.1371/journal.pmed.1000097. .
  22. Carella C, Mazziotti G, Morisco F, Manganella G, Rotondi M, et al. (2001) Long-term outcome of interferon α induced thyroid autoimmunity and prognostic influence of thyroid autoantibody pattern at the end of treatment. J Clin Endocrinol Metab 86: 1925–1929. Find this article online
  23. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, et al. (2002) Peginterferon alpha 2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347: 975–982. Find this article online
  24. Watanabe U, Hashimoto E, Hisamitsu T, Obata H, Hayashi N (1994) The risk factor for development of thyroid disease during interferon-α therapy for chronic hepatitis C. Am J Gastroenterol. 89: 399–403. Find this article online
  25. Lisker-Melman M, Di Bisceglie AM, Usala SJ, Weintraub B, Murray LM, et al. (1992) Development of thyroid disease during therapy of chronic viral hepatitis with interferon α. Gastroenterol 102: 2155–2160. Find this article online
  26. Kim B K, Choi Y S, Park Y H, Lee S U (2011) Interferon-alpha-induced destructive thyroiditis followed by Graves’ Disease in a patient with chronic hepatitis C: A case report. J Korean Med Sci 26: 1638–1641. Find this article online
  27. Carella C, Mazziotti G, Morisco F, Rotondi M, Cioffi M, et al. (2002) The addition of ribavirin to interferon-α therapy in patients with hepatitis C virus-related chronic hepatitis does not modify the thyroid autoantibody pattern but increases the risk of developing hypothyroidism. Eur J Endocrinol 146: 743–749. Find this article online
  28. Monzani F, CaraccioN,Dardano A, Ferrannini E (2004) Thyroid autoimmunity and dysfunction associated with type 1 interferon therapy. Clin Exp Med 3(4): 199–210. Find this article online
  29. Deutsch M, Dourakis S, Manesis EK, Gioustozi A, Hess G, et al. (1997) Thyroid abnormalities in chronic viral hepatitis and their relationship to interferon α therapy. Hepatol 26: 206–210. Find this article online
  30. Fernandez-Soto L, Gonzalez A, Escobar-Jimenez F, Vazquez R, Ocete E, et al. (1998) Increased risk of autoimmune thyroid disease in hepatitis C vs. hepatitis B before, during, and after discontinuing interferon therapy. Arch Intern Med 158: 1445–1448. Find this article online
  31. Okanoue T, Sakamoto S, Itoh Y, Minami M, Yasui K, et al. (1996) Side effects of high-dose interferon therapy for chronic hepatitis C. J Hepatol. 25: 283–291. Find this article online
  32. Hsieh MC, Yu ML, Chuang WL, Shin SJ, Dai CY, et al. (2000) Virologic factors related to interferon alpha induced thyroid dysfunction in patients with chronic hepatitis C. Eur J Endocrinol. 142: 431–437. Find this article online
  33. Floreani A, Chiaramonte M, Greggio NA, Fabris P, De Lazzari F, et al. (1998) Organ-specific autoimmunity and genetic predisposition in interferon-treated HCV-related chronic hepatitis patients. Ital J Gastroenterol Hepatol 30: 71–76. Find this article online
  34. Baudin E, Marcellin P, Pouteau M, Colas-Linhart N, Le Floch JP, et al. (1993) Reversibility of thyroid dysfunction induced by recombinant α interferon in chronic hepatitis C. Clin Endocrinol (Oxf). 39: 657–661. Find this article online
  35. Tran A, Quaranta JF, Benzaken S, Thiers V, Chau HT, et al. (1993) High prevalence of thyroid autoantibodies in a prospective series of patients with chronic hepatitis C before interferon therapy. Hepatol 18: 253–257. Find this article online
  36. Kakizaki S, Takagi H, Murakami M, Takayama H, Mori M (1999) HLA antigens in patients with interferon-α-induced autoimmune thyroid disorders in chronic hepatitis C. J Hepatol. 30: 794–800. Find this article online
  37. Preziati D, La Rosa L, Covini G, Marcelli R, Rescalli S, et al. (1995) Autoimmunity and thyroid function in patients with chronic active hepatitis treated with recombinant interferon α-2a. Eur J Endocrinol 132: 587–593. Find this article online
  38. Loviselli A, Oppo A, Velluzzi F, Atzeni F, Mastinu GL, et al. (1999) Independent expression of serological markers of thyroid autoimmunity and hepatitis virus C infection in the general population: results of a community-based study in northwestern Sardinia. J Endocrinol Invest 22: 660–665. Find this article online
  39. Rose NR, Rasooly L, Saboori AM, Burek L (1999) Linking iodine with autoimmune thyroiditis. Environ Hlth Perspect 107: 749–752. Find this article online
  40. Minelli R, Braverman LE, Valli MA, Schianchi C, Pedrazzoni M, et al. (1999) Recombinant interferon α (rIFN-α) does not potentiate the effect of iodine excess on the development of thyroid abnormalities in patients with HCV chronic active hepatitis. Clin Endocrinol (Oxf) 50: 95–100. Find this article online
  41. Bini EJ, Mehandru S (2004) Incidence of thyroid dysfunction during interferon alfa-2b and ribavirin therapy in men with chronic hepatitis C: a prospective cohort study. Arch Intern Med 164(21): 2371–2376. Find this article online
  42. Imagawa A, Itoh N, Hanafusa T, Oda Y, Waguri M, et al. (1995) Autoimmune endocrine disease induced by recombinant interferon α therapy for chronic active type C hepatitis. J Clin Endocrinol Metab 80: 922–926. Find this article online
  43. Ramos-Casals M, Trejo O, García-Carrasco M, Font F (2003) Therapeutic management of extrahepatic manifestations in patients with chronic hepatitis C virus infection. Rheumatol 42: 818–28. Find this article online
  44. Gupta VK, Kotwar NK, Jha A, Menon AS, Shukla R (2011) A case of Interferon induced Hypothyroidism. MJAFI 67: 1. Find this article online
  45. Nagayama Y, Kazuhiroo HTA, Suruta MT, Akeshita A, Kimura H, et al. (1994) Exacerbation of thyroid autoimmunity by interferon α treatment in patients with chronic viral hepatitis: Our studies and review of the literature. Endocr Jl 41 (5): 562–572. Find this article online
  46. Mandac JC, Chaudhry S, Sherman KE, Tomer Y (2006) The Clinical and Physiological Spectrum of Interferon - Alpha Induced Thyroiditis: Toward a New Classification. Hepatol 43: 661–672. Find this article online
  47. Testa P, Castaldi V, Fant GF, Fiore V, Grieco A, et al. (2006) Prevalence of HCV antibodies in autoimmune thyroid disease. Eur Rev Med Pharmacol Sci 10: 183–186. Find this article online
  48. Antonelli A, Ferri C, Pampana A, Fallahi P, Nesti C, et al. (2004) Thyroid disorders in chronic hepatitis C. Am J Med. 117(1): 10–3. Find this article online
  49. Dalgard O, Bjoro K, Hellum K, Myrvang B, Bjoro T, et al. (2002) Thyroid dysfunction during treatment of chronic hepatitis C with interferon α: no association with either interferon dosage or efficacy of therapy. J Intern Med 251: 400–406. Find this article online
  50. Nadeem A, Aslami M, Khan DA, Hussain T, Khan SA (2009) Effects of combined interferon alpha and ribavirin therapy on thyroid functions in patients with chronic hepatitis C. J Coll Physic Surg Pak 19. (2): 86–90. Find this article online
  51. Yan Z, Fan K, Fan Y, Wang X, Mao Q, et al. (2012) Thyroid dysfunction in Chinese patients with chronic hepatitis C treated with interferon alpha: Incidence, long term outcomes and predictive factors. Hepat Mon 12 (9): e6390 DOI:10.5812/hepatmon.6390. .
  52. European Association for the Study of the Liver (2011) EASL Clinical Practice Guidelines: Management of hepatitis C. J Hepatol. 55: 245–264. Find this article online
  53. Ghany MG, Strader DB, Thomas DL, Seeff B (2009) American Association for the study of liver diseases practice guidelines-Diagnosis, management and treatment of Hepatitis C: An update. Hepatology 49(4): 1335–1374. Find this article online
  54. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, et al. (2001) Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358: 958–965. Find this article online
  55. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, et al. (2002) Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347: 975–982. Find this article online
  56. Hadziyannis SJ, SetteHJr, Morgan TR, Balan V, Diago M, et al. (2004) Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med 140: 346–355. Find this article online
  57. Barut S, Gunal O, Erkorkmaz U, Yildiz F (2012) Thyroid dysfunction in Turkish patients with chronic hepatitis C receiving peginterferon plus ribavirin in the period of 2005–2010. Braz J Infect Dis 16(5): 448–51. Find this article online
  58. Kim BK, Choi YS, Park YH, Lee SU (2011) Interferon-alpha-induced destructive thyroiditis followed by Graves’ disease in a patient with chronic hepatitis C: a case report. J Korean Med Sci 26(12): 1638–41. Find this article online
  59. Vasiliadis T, Anagnostis P, Nalmpantidis G, Soufleris K, Patsiaoura K, et al. (2011) Thyroid dysfunction and long-term outcome during and after interferon-alpha therapy in patients with chronic hepatitis C. Ann Acad Med Singapore. 40(9): 394–400. Find this article online
  60. Andrade LJ, Atta AM, Atta ML, Mangabeira CN, Paraná R (2011) Thyroid disorders in patients with chronic hepatitis C using interferon-alpha and ribavirin therapy. Braz J Infect Dis 15(4): 377–81. Find this article online
  61. Dabrowska MM, Panasiuk A, Flisiak R (2010) Thyroid dysfunction in antiviral therapy of chronic hepatitis C. Hepatogastroenterol. 57(101): 826–31. Find this article online
  62. Costelloe SJ, Wassef N, Schulz J, Vaghijiani T, Morris C, et al. (2010) Thyroid dysfunction in a UK hepatitis C population treated with interferon-alpha and ribavirin combination therapy. Clin Endocrinol (Oxf) 73(2): 249–56. Find this article online
  63. Tran HA, Reeves GE (2009) The Spectrum of Autoimmune Thyroid Disease in the Short to Medium Term Following Interferon-alpha Therapy for Chronic Hepatitis C. Int J Endocrinol. 2009: 241786 Doi:10.1155/2009/241786. .
  64. Vezali E, Elefsiniotis I, Mihas C, Konstantinou E, Saroglou G (2009) Thyroid dysfunction in patients with chronic hepatitis C: virus- or therapy-related? J Gastroenterol Hepatol 24(6): 1024–9. Find this article online
  65. Jamil KM, Leedman PJ, Kontorinis N, Tarquinio L, Nazareth S, et al. (2009) Interferon-induced thyroid dysfunction in chronic hepatitis C. J Gastroenterol Hepatol. 24(6): 1017–23. Find this article online
  66. Masood N, Ghori R, Memon A, Memon S, Memon KI, et al. (2008) Frequency of thyroid disorders during interferon and ribavirin therapy in chronic hepatitis C infection. J Coll Physicians Surg Pak 18(6): 347–51. Find this article online
  67. Tran HA, Jones TL, Batey RG (2005) The spectrum of thyroid dysfunction in an Australian hepatitis C population treated with combination Interferon-alpha2beta and Ribavirin.BMC Endocr Disord 12. 5: 8. Find this article online
  68. Parana R, Cruz M, Santos-Jesus R, Ferreira K, Codes L, et al. (2000) Thyroid disease in HCV carriers undergoing antiviral therapy with interferon plus ribavirin. Braz J Infect4: 284–290. Find this article online
  69. Wirth S, Pieper-Boustani H, Lang T, Ballauff A, Kullmer U, et al. (2005) Peginterferon alfa-2b plus ribavirin treatment in children and adolescents with chronic hepatitis C. Hepatol. 41: 1013–1018. Find this article online
  70. Kee KM, Lee CM, Wang JH, Tung HD, Changchien CS, et al. (2006) Thyroid dysfunction in patients with chronic hepatitis C receiving a combined therapy of interferon and ribavirin: incidence, associated factors and prognosis. J Gastroenterol Hepatol 21: 319–26. Find this article online
  71. Gehring S, Kullmer U, Koeppelmann S, Gerner P, Wintermeyer P, et al. (2006) Prevalence of autoantibodies and the risk of autoimmune thyroid disease in children with chronic hepatitis C virus infection treated with interferon-alpha. World J Gastroenterol 28 12(36): 5787–92. Find this article online
  72. Kowala-Piaskowska A, Mozer-Lisewska I, Figlerowicz M, Słuzewski W (2007) Adverse effects during the treatment with pegylated interferon and ribavirin in children with chronic hepatitis C. Pharmacoepidemiol drug saf. 16: 1095–1103. Find this article online
  73. Plockinger U, Kruger D, Bergk A, Weich V, Wiedenmann B, et al. (2007) Hepatitis-C patients have reduced growth hormone (GH) secretion which improves during long-term therapy with pegylated interferon-alpha. Amer J Gastroenterol 102: 2724–2731. Find this article online
  74. Tran HA, Reeves GE, Jones TL (2009) The natural history of interferon-alpha2b-induced thyroiditis and its exclusivity in a cohort of patients with chronic hepatitis C infection. QJM 102: 117–122. Find this article online
  75. Tran HA, Jones TL, Ianna EA, Reeves GE (2011) The natural history of interferon-a induced thyroiditis in chronic hepatitis c patients: a long term study. Thyroid Res 8 4(1): 2 Doi:10.1186/1756-6614-4-2. .
  76. Moncoucy X, Leymavie F, Delemer B, Levy S, Bernard-Chabert B, et al. (2005) Risk factors and long term course of thyroid dysfunction during antiviral treatments in 221 patients with chronic hepatitis C. Gastroenterol Clin Biol. 29: 339–345. Find this article online
  77. Gowans EJ. Distribution of markers of hepatitis C virus infection throughout the body. Semin Liver Dis 20: 85–102. Find this article online
  78. Lloyd AR, Jagger E, Post JJ, Crooks LA, Rawlinson WD, et al. (2007) Host and viral factors in the immuno pathogenesis of primary hepatitis C virus infection. Immuno Cell Biol 85: 24–32. Find this article online
  79. Huang JF, Chuang WL, Dai CY, Chen SC, Lin ZY, et al. (2006) The role of thyroid autoantibodies in the development of thyroid dysfunction in Taiwanese chronic hepatitis C patients with interferon-alpha and ribavirin combination therapy. J Viral Hepat 13(6): 396–401. Find this article online
  80. Murakami M, Kakizaki S, Takayama H, Takagi H, Mori M (1999) Autoimmune thyroid disease induced by interferon therapy. Nippon Rinsho 57: 1779–83. Find this article online
  81. Carella C, Amato G, Biondi B, Rotondi M, Morisco F, et al. (1995) Longitudinal study of antibodies against thyroid in patients undergoing interferon-alpha therapy for HCV chronic hepatitis. Horm Res 44: 110–14. Find this article online
  82. Marazuela M, Garcia-Buey L, Gonzalez-Fernandez B, García-Monzón C, Arranz A, et al. (1996) Thyroid autoimmune disorders in patients with chronic hepatitis C before and during interferon-alpha therapy. Clin Endocrinol (Oxf) 44: 635–42. Find this article online
  83. Wong V, Fu AX, George J, Cheung NW (2002) Thyrotoxicosis induced by alpha-interferon therapy in chronic viral hepatitis. Clin Endocrinol (Oxf) 56(6): 793–8. Find this article online
  84. Morisco F, Mazziotti G, Rotondi M, Tuccillo C, Iasevoli P, et al. (2001) Interferon-related thyroid autoimmunity and long-term clinical outcome of chronic hepatitis C. Dig Liver Dis. 33(3): 247–53. Find this article online
  85. Rocco A, Gargano S, Provenzano A, Nardone M, De Sanctis GM, et al. (2001) Incidence of autoimmune thyroiditis in interferon-alpha treated and untreated patients with chronic hepatitis C virus infection. Neuro Endocrinol Lett 22(1): 39–44. Find this article online
  86. Gelu-Simeon M, Burlaud A, Young J, Pelletier G, Buffet C (2009) Evolution and predictive factors of thyroid disorder due to interferon alpha in the treatment of hepatitis C. World J Gastroenterol. 15(3): 328–33. Find this article online
  87. Doi F, Kakizaki S, Takagi H, Murakami M, Sohara N, et al. (2005) Long-term outcome of interferon-alpha-induced autoimmune thyroid disorders in chronic hepatitis C. Liver Int. 25(2): 242–6. Find this article online
  88. Berris B, Feinman SV (1991) Thyroid dysfunction and liver injury following interferon treatment of chronic viral hepatitis. Dig Dis Sci 36: 1657–1660. Find this article online
  89. Pateron D, Hartmann DJ, Duclos-Vallee JC, Jouanolle H, Beaugrand M (1993) Latent autoimmune thyroid disease in patients with chronic HCV hepatitis. J Hepatol 17(3): 417–419. Find this article online
  90. Kodama T, Katabami S, Kamijo K, Katanuma A, Yamashita K, et al. (1994) Development of transient thyroid disease and reaction during treatment of chronic hepatitis C with interferon. J Gastroenterol 29(3): 289–92. Find this article online
  91. Friedrich-Rust M, Theobald J, Zeuzem S, Bojunga J (2009) Thyroid function and changes in ultrasound morphology during antiviral therapy with pegylated interferon and ribavirin in patients with chronic hepatitis C. J Viral Hepat. 16(3): 168–77. Find this article online
  92. Krupinska J, Wawrzynowicz-Syczewska M, Urbanowicz W, Poblock J, Syrenicz A (2011) The influence of interferon alpha on the induction of autoimmune thyroiditis patients treated for chronic viral hepatitis type C. Endokrynol Pol. 62(6): 517–22. Find this article online